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Both adults and young children possess powerful statistical computation capabilities—they can infer the
referent of a word from highly ambiguous contexts involving many words and many referents by
aggregating cross-situational statistical information across contexts. This ability has been explained by
models of hypothesis testing and by models of associative learning. This article describes a series of
simulation studies and analyses designed to understand the different learning mechanisms posited by the
2 classes of models and their relation to each other. Variants of a hypothesis-testing model and a simple
or dumb associative mechanism were examined under different specifications of information selection,
computation, and decision. Critically, these 3 components of the models interact in complex ways. The
models illustrate a fundamental tradeoff between amount of data input and powerful computations: With
the selection of more information, dumb associative models can mimic the powerful learning that is
accomplished by hypothesis-testing models with fewer data. However, because of the interactions among
the component parts of the models, the associative model can mimic various hypothesis-testing models,
producing the same learning patterns but through different internal components. The simulations argue
for the importance of a compositional approach to human statistical learning: the experimental decom-
position of the processes that contribute to statistical learning in human learners and models with the
internal components that can be evaluated independently and together.

Keywords: statistical learning, computational modeling, word learning

Supplemental materials: http://dx.doi.org/10.1037/a0026182.supp

Human learners are adept at picking up regularities in data
(Perruchet & Pacton, 2006; Regier, 2003; Siskind, 1996; Sobel &
Kirkham, 2007; Steyvers & Tenenbaum, 2005; Tenenbaum &
Griffiths, 2001; Yu, 2008). Both adults and infants track sequential
probabilities to segment continuous speech into individual words
(Newport & Aslin, 2004; Saffran, Aslin, & Newport, 1996); they
extract rudimentary grammars from the latent structure of se-
quences of words (Gomez & Gerken, 1999; Gómez & Maye, 2005;
Saffran & Wilson, 2003); they generalize sequential patterns from
visual sequences (Kirkham, Slemmer, & Johnson, 2002), and they
find word–referent pairings in noisy and ambiguous data by track-
ing co-occurrences and non-co-occurrences across many individ-
ual word–referent pairings (Frank, Goodman, & Tenenbaum,
2009; L. Smith & Yu, 2008; Vouloumanos, 2008; Yu, Ballard, &
Aslin, 2005; Yu & Smith, 2007).

This article is concerned with the last form of statistical learn-
ing—mapping words to referents—under conditions of uncer-
tainty. Everyday word learning occurs in noisy contexts with many

words and many potential referents for those words, as well as
much ambiguity about which word goes with which referent. One
way to resolve this ambiguity is for learners to accumulate evi-
dence across individually ambiguous contexts (Gleitman, 1990;
Pinker, 1984). Figure 1 illustrates a simple example. A learner
hears the words ball and bat in the context of seeing the object ball
and the object bat. Without other information, the learner cannot
know whether the word form ball refers to one or the other visual
object. If subsequently, while viewing another scene with the
potential referents of ball and dog, the learner hears the words ball
and dog, and if the learner can combine the conditional probabil-
ities of co-occurrences across trials, the learner could correctly
map ball to the object ball (and perhaps also infer the connection
between the word bat and the object bat). This solution seems
straightforward. However, until recently, there was no evidence as
to whether human learners do this kind of learning with any
facility. Now, a growing set of data shows that adults are quite
good at this, even when faced with many novel words and many
novel referents under conditions of high ambiguity (Kachergis,
Yu, & Shiffrin, 2009; Yu & Smith, 2007; Yurovsky & Yu, 2008);
experimental studies also indicate that infants and young children
do this kind of learning as well (Akhtar & Montague, 1999; Fisher,
Hall, Rakowitz, & Gleitman, 1994; L. Smith & Yu, 2008; Vou-
loumanos & Werker, in press; Yu & Smith, in press). The open
question is what the responsible learning mechanism is.

Discussions of word learning in general (Gleitman, Cassidy,
Nappa, Papafragou, & Trueswell, 2005; Kaminski, Call, & Fi-
scher, 2004; Markman, 1992; L. B. Smith, 2000) and cross-
situational word learning in particular (Frank et al., 2009; Yu,
2008; Yu & Smith, 2007) are often couched in very different terms
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that divide into two general classes of mechanisms: hypothesis
testing and associative learning. Proponents of a hypothesis-testing
framework often characterize associative learning as the simple
and uninformed registration of co-occurrences and/or the calcula-
tion of conditional probabilities and thus as “dumb” (Keil, 1992).
Hypothesis testing, in contrast, is generally characterized as a form
of learning in which coherent hypotheses are formed often in
conceptually constrained ways and then either confirmed or dis-
confirmed—not just by counting co-occurrences—but through
more statistically sophisticated evaluations of the evidence. In the
context of word learning, associative learning and hypothesis
testing are thus typically seen as fundamentally different kinds of
learning mechanisms and with fundamentally different implica-
tions about the nature of the learner.

This article presents a series of simulations that serve as a first
step to targeted experimentation and modeling in the service of
understanding human cross-situational word learning. The goal—
and the end product of the simulations—is not a decision as to
whether some specific hypothesis-testing or associative-learning
model better fits some specific set of experimental data. Instead,
the main thesis is that the contrast between hypothesis testing and
associative learning in the context of statistical word learning is
not well formed. There is a muddle as to where, when, and how the
psychological work of statistical computation is being done—in
the selection of information, in the learning machinery, or at
decision (knowledge retrieval). We argue for a decomposition of
models—and a decomposition of empirical research on statistical
learning—into comparable and coherent psychological compo-
nents. This decomposition is necessary because selection and
decisional processes interact with the core learning mechanisms of
the two different classes of theories. The upshot of these interac-
tions is that one kind of learning mechanism (e.g., associative
learning) can mimic (through multiple routes) the properties of
another (e.g., hypothesis testing); a similar point, though in differ-
ent contexts, has been made by other researchers (J. A. Anderson,
1970; J. R. Anderson, 1978; J. R. Anderson & Bower, 1973;
Baum, 1989; Quartz & Sejnowski, 1997), but it is a lesson that
needs to be relearned to make progress in understanding statistical
word–referent learning. The main conclusion of this article is that
these two classes of models will be discriminated by direct assess-
ments of the different components and by an understanding of how
those components interact with each other.

Hypothesis Testing

The word learner’s task has often been viewed as akin to that of
a linguist testing hypotheses about how words map to possible
referents (Bloom, 2000; Carey, 1978; Markman, 1992). In these
accounts (Vouloumanos & Werker, in press; Xu & Tenenbaum,
2007), the learner is assumed to represent a set of hypotheses about
word-meaning mappings (Waxman & Gelman, 2009; Waxman &
Hall, 1993) and then to accept or reject specific hypotheses based
on the experienced input. Recent probabilistic models liberalize
this by increasing and decreasing the likelihood (rather than out-
right acceptance or rejection) of hypotheses in light of new evi-
dence (Xu & Tenenbaum, 2007). In brief, the central idea within
the many variants of hypothesis-testing accounts is that learners
represent specific hypotheses about word–referent pairings and
then, in the face of experienced evidence, select among those
hypotheses based on some principled inference procedure. This
general class of models has both experimental (Halberda, 2006;
Vouloumanos & Werker, in press; Xu & Tenenbaum, 2007) and
computational support (Frank et al., 2009; Siskind, 1996).

However, because there is an unlimited set of possible hypoth-
eses that are objectively true for any set of data (Goodman, 1965),
research in this tradition has also been interested in constraints on
the possible space of hypotheses. Some of these constraints con-
cern possible kinds of meanings such as category hierarchies (Xu
& Tenenbaum, 2007) or syntactic category–meaning links (Wax-
man & Booth, 2001). Within this tradition and particularly relevant
to the focus of this article, there have also been proposed con-
straints on how the evidence for hypotheses is evaluated (Frank et
al., 2009; Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992; Mark-
man, 1990; K. Smith, Smith, Blythe, & Vogt, 2006). Most notable
of these proposed constraints is the mutual exclusivity (ME) as-
sumption (Golinkoff, Mervis, & Hirsh-Pacek, 1994; Halberda,
2006; Markman, 1992; Merriman, 1999), which posits that if an
object has one name, it should not have another. There is consid-
erable experimental evidence that children do adhere to something
like an ME assumption in mapping new words to referents, show-
ing a strong novel-word-to-novel-referent bias in many (but not
all) experimental contexts (e.g., Golinkoff et al., 1992; Golinkoff,
Jacquet, Hirsh-Pasek, & Nandakumar, 1996). The ME constraint
has also been shown to be powerful in hypothesis-testing models
(HTMs) of cross-situational learning, enabling the model to rap-
idly resolve competing hypotheses about word–referent pairings
(K. Smith et al., 2006; Siskind, 1996).

Thus, within the hypothesis-testing framework, a learner faced
with the cross-situational word learning task of Figure 1 might
wrongly hypothesize on the initial trial that ball refers to the object
bat but correct that hypothesis on Trial 2 given the disconfirming
evidence. Given enough data across individually ambiguous trials
and perhaps also constraints such as ME, the co-occurrence regu-
larities would, in the end, support the right hypotheses over others.
Knowledge, the outcome of this learning, is a set of propositions,
a list of confirmed hypotheses, each specifying a word and its
referent. Although there are different versions of HTMs that vary
from all-or-none decisions to more powerful and probabilistic
forms of inference, in this article, we concentrate on the core
assumption—formation and evaluation of hypotheses—in an effort
to more clearly understand the differences between HTMs as a
class and associative models as a class.

Figure 1. Cross-situational statistics between words and referents can be
calculated across trials to unambiguously determine correct word–referent
pairings.
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Associative Learning

Proponents of hypothesis-testing accounts usually characterize
associative learning as consisting of the unconstrained and simple
counting of co-occurrences of real-world statistics (Keil, 1992;
Waxman & Gelman, 2009; Xu & Tenenbaum, 2007). If one takes
this simple idea and applies it to the cross-situational learning task
in Figure 1, it would work like this: On Trial 1, the learner could
equally associate ball with both the object ball and the object bat,
but after Trial 2 and with the experience of ball in the context of
the object ball and the object dog, the association between ball and
the object ball would be stronger than that between ball and the
object bat. Over enough trials, these association strengths will
converge on the real-world statistics. Within this account, statisti-
cal learners may not have learned that an individual word refers to
an individual kind of object but may only have built stronger
associations of words to the targets than to the foils. Thus, instead
of a list of words and their referents, the outcome of associative
learning would be a matrix of stronger and weaker associations
with the columns representing words, the rows representing refer-
ents, and the cells representing the associative strengths of word–
referent pairs.

Critically, a contemporary understanding of associative learning
suggests that it involves much more than merely counting up
contingencies but instead also involves highly interactive effects of
learned associations on each other, on attention, and on subsequent
learning (Billman & Knutson, 1996; Kruschke, Kappenman, &
Hetrick, 2005; Rogers & McClelland, 2004; Yoshida & Smith,
2005). For example, there are now a number of associative models
that generate ME-like effects (MacWhinney, 1987; Merriman,
Bowman, & MacWhinney, 1989; Regier, 2003). Contemporary
associative models also include interactive effects among associ-
ations—both competitive (Colunga & Smith, 2005; Colunga,
Smith, & Gasser, 2009; Gupta & MacWhinney, 1997; Merriman,
1999) and positive-feedback or “rich get richer” effects (Pauli &
O’Reilly, 2008; Rehder & Murphy, 2003; Yoshida & Smith, 2005)
that can lead to almost rule-like (all-or-none) learning outcomes
(Colunga & Smith, 2005; Mareschal & Shultz, 1996) as well as
nonlinear accelerations in the rate of learning (Colunga & Smith,
2005; Plunkett, Sinha, Moller, & Strandsby, 1992; Regier, 2003).
The interactive effects among sets of associations in these models
are founded on experimental work on associative and attentional
mechanisms in animals (Kamin, 1967; Mackintosh, 1975; Re-
scorla & Wagner, 1965) and human adults (Chun & Jiang, 1999;
Heit & Bott, 2000; Kahana, 2002; Kruschke, 2001; Kruschke &
Blair, 2000; L. B. Smith, Colunga, & Yoshida, 2010). In brief,
there are many variants of associative-learning models that range
from quite simple (counting co-occurrences) to much more sophis-
ticated. Here, however, with the main goal being to clarify the
differences between the core ideas of associative learning and
hypothesis testing, we concentrate on the simplest (dumbest) as-
sociative learner, one that counts co-occurrences.

Building a Model

These two learning mechanisms are founded on fundamentally
different assumptions and would seem to have profoundly differ-
ent implications for how we understand the learning task, what is
learned, and the learner. Yet the ideas of hypothesis testing and

association are grand ideas that provide at best bare-bones sketches
of possible models. To examine the applicability of these ideas to
some learning domain such as cross-situational learning, one needs
to fill in these sketches. The problem is that to build such a
working model to perform some learning task, one will have to
specify processes that seem outside of the main debate about the
two kinds of learning. More specifically, to build a working model
that can simulate performance in some task, one needs to specify
information selection, the learning machinery (which is viewed as
the core of the debate but which also needs specification to be
actually implemented in a model), and the decision processes at
test.

Information Selection

The cross-situational learning task simultaneously presents mul-
tiple words and multiple referents. The starting point for any model
then is how much and what kind of information is selected and
stored from each learning trial. Even if one assumes that the units
for learning are whole words (not their parts or phrases) and whole
objects (not their parts, properties, or sets of objects), there are still
different options in information selection. One could, as an ideal
learner, register all the word–referent pairs—all the associations or
all the possible hypotheses consistent with that input. Alterna-
tively, one might attend to only a subset of words and referents,
registering just partial information—some words, some refer-
ents—from all that are available at a single moment. Selection
could be very narrow (e.g., just one word and one referent per
learning moment), or it could be broader. Furthermore, selection
could change with learning, beginning broadly and then becoming
narrower if selection depends on what is already known. In any
case, a first step for a model that learns from a series of individ-
ually ambiguous learning trials is to specify the information that is
input into the learning mechanism.

Learning Machinery

In most discussions of statistical word learning, the learning
machinery—associative or hypothesis testing—is seen as the cen-
tral theoretical question. However, within these two classes, there
are choices to be made about the learning mechanism itself. For
example, a hypothesis-testing learner could keep track of and
aggregate evidence for just some (and not all possible) word–
referent hypotheses. If so, the model needs to specify how those
initial hypotheses are formed or selected as well as how many
hypothesized pairs the learning system is capable of tracking. The
model also needs to specify how strong the evidence needs to be
for the learning system to accept or reject a hypothesized pair.
There are roughly the same choices, though couched in different
terms, for associative models. An associative learner could mem-
orize all co-occurrences (the whole matrix) or (because of possibly
competitive processes) only register and aggregate some occur-
rences. Furthermore, an associative learner could simply count
registered occurrences, or such a learner could apply more ad-
vanced probabilistic computations based on those counts, such as
conditional probabilities (Aslin, Saffran, & Newport, 1998) or
latent variables in probabilistic graphical models (Jordan, 1998). In
brief, both hypothesis-testing and associative models have choices
about the kind of information aggregated, the kinds of computa-
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tions applied to that information, and the form of the learning
outcome.

Decisions at Test

Finally, for both kinds of learning systems, models need to
specify how the accrued information is retrieved and used by
learners to make decisions during testing. Commonly, experiments
on word learning present the learner at test with a single word and
a choice among some number of alternative referents (Yu & Smith,
2007; Yurovsky & Yu, 2008). Given the evidence accumulated
during training—a list of hypotheses, the probabilities associated
with hypotheses, or weaker and stronger associations—
participants must make a momentary decision, selecting the best
alternative choice given the queried word. Learners could apply a
winner-take-all strategy such that the strongest hypothesis or as-
sociation for the tested word governs choices in an all-or-none
manner. Alternatively, responses could be graded and based on the
probability that a hypothesis is correct or on the relative strengths
of all the associations to the candidate word. Furthermore, the
decision could be based on the single word (or word–referent
pairing) being queried, or it could be based on a “best overall
solution” for all the word–object pairings acquired during training.
Whatever the core learning mechanism, models need to specify
how acquired information is retrieved and how decisions are made
at the time of test because the learning performance that one is
modeling is based on those decision processes.

Rationale and Organization

The main goal of the present article and the simulations is to
understand how these components—and their different specifica-
tions—interact to produce different learning outcomes. This is a
necessary prior step to any attempt to distinguish the two classes of
models. Moreover, we suggest that systematic empirical studies
targeted at understanding these internal components will be nec-
essary before attempts at model discrimination are useful and
generalizable. In the present simulations, we stick to simple core
learning mechanisms designed to capture the core ideas of hypoth-
esis testing and associative learning and specifically vary selection
and decision processes to understand how they interact with the
core difference between the two classes of theories. The organi-
zation of the article is as follows: We first present an overview of
the two basic models that we compare and how they work. We
then present the experimental tasks (from Yu & Smith, 2007) that
we use merely as a starting point in our examination of how
different components—selection, learning machinery, decision—
might interact. Our goal is not to model performance in these tasks
but rather to understand how the three psychological components
inherent to statistical word–referent learning influence learning
performance. We then report a series of simulations that vary
selection in the same way for each model. Next we consider
different decision processes, then the flexibility of the models to
simulate each other’s performance. The results provide new in-
sights on the models and on cross-situational learning and raise a
new agenda for research. Overall, the results suggest that it will not
be easy to distinguish one mechanism from the other without
knowing much more than we do about processes of information

selection and decision and how these processes may change across
tasks, across trials in the task, and across development.

Two Models and the Tasks

Hypothesis-Testing Model

This model attempts to capture the fundamental principle of
hypothesis testing and investigates how this basic learning mech-
anism operates on cross-situational statistics. Because the goal is to
compare this model in various versions to associative-learning
models, the model is intentionally simple, with a clean structure
and several basic components. More specifically, this first version
of an HTM is built on the following assumptions: There is no
information at the beginning of learning to guide learners; thus on
the first trial, learners are assumed to randomly select word–
referent pairs as their initial hypotheses; as more trials ensue, these
initial hypotheses, are gradually justified or replaced. Following
these general principles, we need to specify (a) how many hypoth-
esized pairs are selected and stored from a trial, (b) how learners
justify whether a word–object pair is correct, (c) whether learners
use the ME constraint to eliminate one hypothesis if two working
hypothesized pairs are not compatible, and (d) whether learners
treat previously supported (confirmed) hypotheses as learned
knowledge and use that knowledge to help the learning of new
pairs in subsequent trials. To illustrate how HTM works, we use
one of Yu and Smith’s (2007) conditions in which learners were
presented with four words and four referents on every trial, with no
information about which word went with which referent, and in
which there were a total of 18 words and referents to be learned
from these highly ambiguous training trials.

In this 4 � 4 training condition, the 18 novel word–picture
pairs can be represented as {(p1, w1), (p2, w2), . . . (p12, w18)}.
On the ith trial, the stimuli consist of four visual objects and
four spoken words Ti � �pi1, pi2, pi3,pi4, wi1, wi1, wi2, wi3, wi4�
while i1, i2, i3, and i4 can be selected from 1 to 18. Assume
that the learner maintains a list of hypothesized pairings, the
learned results from previous trials. Thus, the learner’s
current knowledge can be represented as a list of pairs
M � {(pn1

,wm1
), (pn2

,wm2
), . . . , (pnk

, wmk
)}, while nj and mj can

be selected separately from 1 to 18, and the equivalence of these
two indicates a correct pairing. Consider first the case in which
HTM forms and tests one hypothesis per trial, randomly picking
one word and one picture from a trial to build a hypothesized
pairing. Each trial potentially adds hypotheses. Two additional
mechanisms are utilized in this version of HTM to make this
learning process more effective. First, we implement ME in
adding new pairs so as to maintain the consistency of hypoth-
esized word–referent pairings, that is, one word can be associ-
ated with only one picture. Without this, the simulated hypoth-
esis tester could randomly select many conflicting (and
therefore incorrect) word–picture pairs across multiple trials.
Second, the model evaluates a word– object hypothesis in its list
if the word or the object appears in the present trial and is
selected by the model. More specifically, if the same word–
object pairing occurs again, this information if selected will
serve as supporting evidence for the hypothesis under consid-
eration, and the confirmed hypothesis will be treated as learned
knowledge. Moreover, this knowledge will be used to filter out
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the input in subsequent trials; this also significantly simplifies
the learning task. For instance, if a learned pair occurs in a new
trial, it will be removed from the stimuli to reduce the within-
trial ambiguity from a 4 (words) � 4 (referents) trial with 16
candidate word–referent pairs—in terms of the unlearned infor-
mation—to a 3 (words) � 3 (referents) trial and thus only nine
word–referent pairs to be selected.

In the first version of HTM, the model on each trial randomly
selects one word and one object to form a hypothesis about a word–
referent pair, leading to three possible outcomes on that trial: (a) If
neither the word nor the object occurs in the list of hypothesized pairs,
then the model simply adds this new pair into the list because this new
pair is compatible with others in the current list. (b) If the new pair
selected from the current trial conflicts with an existing pair, the
model will check whether the word and the object in the existing pair
co-occur in the current trial. If it does, then the model will keep and
confirm the existing pair (as learned knowledge) because the pair has
co-occurred twice (once before and once in the current trial). Mean-
while, to avoid conflicting hypotheses, the model will discard the
newly selected pair. If the existing pair is not in the current trial, then
that pair definitely is not a correct pair. As a result, the model would
disconfirm and remove the existing pair and add the new pair into the
list as a new hypothesis to be evaluated later. (c) At the later part of
the training phase, the model may detect a set of word–object pairs
that are likely to be correct. Then, it will treat those pairs as learned
and use them to first filter out the input in a new trial before randomly
selecting a new pair from the trial. With more and more accumula-
tively acquired knowledge trial by trial, the learning task is simplified.

At test, the model, like the adults in the Yu and Smith (2007)
experiments, is presented with one word and four choice objects, with
the task of selecting the object that is the referent of the word. Given
the hypothesis list built during training, the model will use one of two
possible decisions for each tested word: (a) First, if the tested word is
in the current hypothesis list, then the model selects the corresponding
object in the hypothesis pair that may be correct or incorrect, or (b) if
the tested word is not in the list, the model will first exclude those
objects that are hypothesized to be linked to other words (a form of
ME during testing) and then randomly select an object from the

remaining options. In this way, the model maintains a coherent set of
hypothesized pairings and generates one answer for each testing trial.

To clarify these mechanisms, Figure 2a presents a trial-by-trial
working version of the HTM considering just two presented words
and two presented referents per trial. In Trial 1, the model ran-
domly selects a pair A-b, and another pair D-d is selected in Trial
2. Note that the model does not know yet whether those two pairs
in the current hypothesized list are correct. In Trial 3, the model
selects A-a and registers that it is not compatible with A-b in the
current list, and thus, it has to select one and discard the other to
follow the ME constraint. To determine which one should be
included, the model checks the current trial and notices that A-b is
not in the current trial and therefore is less likely to be the correct
one; therefore, the model decides to replace A-b with A-a. Mean-
while, the model may also select and store C-c (the remaining
word and referent in this trial) if the model has the capacity to
process more information. In Trial 4, the model gets a chance to
confirm that D-d is correct as it appears a second time in training,
and furthermore, it may also use this information to bind B with b
(the leftover items). At this point, the model has a confirmed pair
(D-d) that can be treated as prior knowledge; a hypothesis pair
(A-a) requires further confirmation, as do two more pairs (B-b,
C-c, etc.) if the model has the capability to keep track of this many.
As more trials are presented, this model will gradually converge to
confirm correct pairs and exclude incorrect ones. Given the knowl-
edge acquired at this point, the model should be able to correctly
identify the confirmed pairs (e.g., D-d) with confidence and maybe
also perform above chance on the yet-to-be-confirmed pairs (e.g.,
A-a, C-c). Therefore, even with minimal exposure to statistical
information (four trials), HTM should demonstrate learning.

Dumb Associative Model (DAM)

One major assumption in the HTM used above is that it applies
the ME constraint on each trial. This limits within-trial ambiguity.
In contrast to this type of explicit one-word-one-referent learning,
an alternative mechanism would be to accumulate evidence across
multiple conflicting associations across trials. During testing, such

Figure 2. A toy example of cross-situational learning to illustrate how hypothesis-testing models (HTMs) and
dumb associative models (DAMs) work with multiple learning trials. Panel a: HTM maintains and evaluates a
hypothesis list. Panel b: DAM counts co-occurring statistics and stores the information in a matrix.
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an associative model might simply pick out the object most
strongly associated with the test word. An associative learner who
kept track and stored all co-occurrences on all trials and at test
chose the most strongly associated referent would be an ideal
learner, internally memorizing and representing the word–object
co-occurrence matrix of input, as shown in Figure 2b. Thus, the
amount of information that an associative learner selects and
registers per trial becomes a highly relevant question. Although
selecting and testing a single word–referent hypothesis seems the
natural approach for hypothesis testing, the registering of multiple
and potentially conflicting co-occurrences from each trial seems
plausible for a human associative learner. Moreover, human learn-
ers may well be able to approximate the ideal learner, tacitly
storing many, if not all, of the possible associations on a trial and
accruing information about all possible pairs across trials. Such an
associative-learning mechanism would, in fact, do quite well in
cross-situational experimental tasks such as those used in Yu and
Smith (2007). However, it is also possible that human learners are
more selective associative learners, picking up only some of the
available information each trial.

Accordingly, a dumb associative-learning model (DAM) was
developed that instantiates the general principle that the system
randomly selects pairs on each trial and accumulates word–
referent pairs without applying any constraints or inferences in
real-time learning. Hence, this dumb associative learner can be
viewed as straightforwardly based on Hebbian learning: The con-
nection between a word and an object is increased if the pair
co-occurs in a trial. More specifically, this general principle is
implemented in the model by updating the strength of a word–
object association over the course of learning in the following
ways:

A�i, j� � �
t�1

K

��t��
n�1

N

��wt
n, i���ot

n, j�,

where A(i, j) represents the strength of the association between
word w(i) and object o(j). This strength is updated from Trial 1 to
Trial k. Within each trial t, wt

n and ot
n indicate the nth word–object

association that the model attends to and attempts to learn. � is the
Kronecker delta function, equal to one when both of its arguments
are the same and equal to zero otherwise. Thus, the model updates
A(i, j) in the tth trial if that pair is one of N associations selected
and attended by the model; �(t) controls the gain of the strength of
associations over the course of learning, which can be used to
capture various cognitive factors related to the registration of an
association, for example, memory decay. Note that one can de-
velop and incorporate more complicated components consistent

with these general principles in various ways, for instance, by
adding competitions between pairs when updating individual as-
sociations, by adding an attentional control gate that allows the
model to switch to to-be-learned words after some words are well
learned, and by specifying different ways of updating associations
based on the present learning state of individual pairs, such as
highlighting and blocking (Kruschke, 2003; Lotz, Vervliet, &
Lachnit, 2009). Here, for clarity of comparison to the simple HTM,
we keep the associative model simple, with only bare bones.

To illustrate how the simple DAM works, we use the toy (two
words and two referents) example again, as shown Figure 2b. If we
assume that the model can keep track of all of the possible
word–referent pairs, then the model registers four pairs when it is
exposed to Trial 1 {A, B, a, b} by increasing the counts of the four
cells {A-a, A-b, B-a, B-b} in the association matrix. When pro-
ceeding to Trial 2, four more cells (C-c, C-d, D-c, D-d) receive
co-occurring counts. In Trial 3, four cells are updated (A-c, A-a,
C-a, C-c) and increased by 1. As a result, both the correct pairs A-a
and C-c gain more counts than other incorrect ones. In Trial 4, the
other two correct pairs B-b and D-d gain more counts. After
training, the model simply counts co-occurrences. By so doing, the
model successfully identifies four correct pairs as the association
counts of those four are larger than other incorrect ones. This toy
example admittedly presents a straightforward association task;
still, one can readily imagine how, even with more to-be-learned
words, more training trials, and a higher degree of uncertainty
within a trial, the DAM might still succeed.

The Tasks

For the simulations that follow, we use the experimental con-
ditions of Yu and Smith (2007) to define a set of different learning
tasks. These conditions vary within-trial ambiguity and the number
of pairs to be learned. The conditions are labeled by the number of
words presented per trial, the number of words to be learned, and
the number of repetitions of each correct word–referent pair. So,
“4 � 4 18 words/6 repetitions” is a condition in which learners
were presented with 18 word pairs to learn, every trial presented
four words and four referents with no information about which
referent went with which word, and there were, across trials, six
repetitions for each word–referent pair (and thus a total of 27
four-word-by-four-referent learning trials). The full set of experi-
mental data used in the following simulations derived from five
conditions of the Yu and Smith word–referent learning task and
are listed in Table 1. These conditions differed in within-trial
ambiguity, two words and two referents, three words and three
referents, or three versions of four words and four possible refer-

Table 1
Five Cross-Situational Learning Conditions Used in the Present Simulation Studies

Condition
Number of
total words

Number of occurrences
per word Number of trials Time per trial (s) Total time (s)

Number of
subjects

2 � 2 18 words/6 repetitions 18 6 54 12 324 38
3 � 3 18 words/6 repetitions 18 6 36 9 324 38
4 � 4 9 words/8 repetitions 9 8 18 12 216 38
4 � 4 9 words/12 repetitions 9 12 27 12 324 28
4 � 4 18 words/6 repetitions 18 6 27 12 324 28
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ents on each trial. The 2 � 2 condition yields four possible
associations per trial, the 3 � 3 condition yields nine, and the 4 �
4 conditions yield the seemingly overwhelming number of 16
word–referent associations per trial. Across conditions, the exper-
iments also manipulated the total number of word–referent pairs to
be learned (nine or 18) and the number of repetitions of each
word–referent pair (six, eight, or 12). In summary, the 2 � 2
condition presented two words and two pictures on each trial, and
there were 18 word–picture pairs each repeated six times. The 3 �
3 condition presented three words and three pictures on each trial,
and again, there were 18 word–picture pairs in total, each of which
co-occurred six times during training. There were three different
4 � 4 conditions each presenting four words and four pictures on
each trial: 4 � 4 18 words/6 repetitions condition; 4 � 4 9 words/8
repetitions condition, and 4 � 4 9 words/12 repetitions condition.
In these experiments, after training, subjects were tested in a
four-alternative forced-choice test—one testing trial for each word
and 18 testing trials in total. For each testing question, subjects
heard one word and were asked to select the corresponding picture
from four options on the computer screen. Figure 3 (right bars)
shows adult learning performance; across conditions that manip-
ulated the ambiguity of the individual trials and the number of
word pairs, participants were successful to different degrees: Per-
formance (in terms of percentage of pairs learned) is very good in
conditions of moderate uncertainty (e.g., 2 � 2 and 3 � 3), but
learners still learn more than half of the total number of the pairs
even under conditions of considerable uncertainty (4 � 4), and the
number of pairs to be learned and the number of repetitions matter
little in the three conditions of high uncertainty.

Information Selection—Amount of Information

The first set of simulations provides information on the models’
abilities to do the basic task, that is, to (at least qualitatively) fit the
adult data. These simulations also provide evidence on the inter-
action of learning performance with the amount of the information
selected (the number of word–referent pairs, etc.) on each learning
trial. We first consider each model with respect to pair selection
and human learning and then compare the two classes of models.

HTM

The selection of a single pair per trial (one explicitly tested
hypothesis) is consistent with usual intuitions about hypothesis
testing; however, this single selection per trial would not seem a
core component of the claim about the learning machinery. Indeed,
modern HTMs can entertain more than one hypothesis (e.g., Te-
nenbaum, Griffiths, & Kemp, 2006). Accordingly, to be consistent
with the associative models, the first set of HTM simulations
randomly selected one word–referent pair per trial, or two, or
three. One-pair selection worked as demonstrated in the toy ver-
sion in Figure 2a. The mechanism when more than one pair is
selected per trial functions in a similar way as the version with one
pair per trial. The only difference is that on each trial, the simu-
lated learner selects two or three compatible hypotheses (e.g., if
A-a is already selected, then B-b or D-c may be selected as a
second hypothesis, but not A-c or B-a—the ones containing either
A or a). In this way, more hypothesized pairs are added and then
evaluated over the course of learning in the same way as the

version in Figure 2a. More specifically, both the ME constraint and
the mechanism for identifying and utilizing confirmed pairs are in
operation. In this way, three versions of HTM are used to simulate
the five Yu and Smith (2007) conditions (only one- and two-pair
selection is possible in the 2 � 2 training condition). Because the
model randomly selects and stores pairs, very different outcomes
are possible given different histories of pair selections. However,
different from the task of gathering empirical data from human
learners, we can easily run enough simulations to obtain solid
estimates from simulated learners. Pilot simulations indicated that
the variation of the results from HTM (and the associative model)
converges on a stable pattern by 1,000 runs. Accordingly, each
simulation was run 1,000 times (as 1,000 simulated learners).

Figure 3a shows the simulation results. Relative to human
performance, HTM with just one pair selected and processed did

Figure 3. Simulation results from two models compared with human data
(the rightmost bars). Panel a: Simulation results of the hypothesis-testing
model (HTM) with one, two, and three pairs selected from each trial.
Overall, HTM and human learners share the same trend in learning per-
formance. Among three variants of HTM, both the one-pair selection and
two-pair selection models can best fit the behavioral data from some of the
five learning conditions. Panel b: A comparison between human learners
and three different DAM learners. Although the learning performance of
one-pair DAM does not fit well with human data compared with two-pair
and three-pair versions, the results are still far above chance, suggesting
that a simple associative mechanism with limited input data can still
acquire some knowledge from cross-situational learning.
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quite well, showing a roughly similar pattern to humans across the
five conditions. When selecting two or more pairs, however, HTM
overlearned relative to humans in the three 4 � 4 conditions that
present the most within-trial ambiguity. In terms of the absolute
level of performance (rather than human-like performance), all
variations of HTM did very well in conditions of low ambiguity
(2 � 2 and 3 � 3) and performed above chance in all conditions.
Moreover, HTM showed improvement when more pairs were
selected and evaluated per trial. This observation is in line with the
general principle of statistical learning: More statistical computa-
tions with more statistical information lead to better learning. The
one-pair- and two-pair-selection HTMs were relatively unaffected
(in terms of proportion of pairs learned) by the number of pairs to
be learned (i.e., there are no significant differences between 4 � 4
18 words/6 repetitions and 4 � 4 9 words/8 repetitions) and
(within the limits of the experiment) by the number of repetitions
of each pair.

DAM

Here, we use the simplest version of DAM by keeping �(t)
constant and then, similar to the simulations with HTM, manipu-
late the number of pairs—one, two, or three—that are selected in
each trial. During testing, the model accesses the association
matrix built during training and selects the object that has the
strongest association with the tested word i (maxiA(i, j), etc.).
Again, each simulation was run 1,000 times as 1,000 simulated
statistical learners. Overall, as shown in Figure 3b, the simulated
learners did quite well in the forced-choice test. DAM is a really
simple model, yet it managed to learn even given highly ambigu-
ous data. The two- and three-pair versions, but not the one-pair
version, compare favorably to HTM and to the human data. How-
ever, to match what HTM accomplishes with one randomly se-
lected pair per trial, DAM requires broader (less focused) attention
and the registration of more information (pairs, etc.) in each trial.

The success of DAM might be considered surprising. Examin-
ing examples of association matrices built by one-pair and two-
pair learners, respectively, shows those matrices consist of many
zero cells and just a few nonzero entries. Nonetheless, in the
forced-choice tests, DAM demonstrated learning based on partial
and incomplete matrices. This makes the simple but important
point that within a matrix of knowledge, choosing the best alter-
native is often good enough, even given a very sparse matrix in
which most cells are zeros and thus may seem to contain no useful
information. In brief, DAM—a very simple just-co-occurrence-
counting model—compares reasonably well with HTM and is able
to approximate HTM’s more sophisticated data evaluation by
picking up and storing more information per trial. This is a
fundamental difference between the two, and thus, the question of
how much information learners pick up per trial would seem to be
a key (but not as yet well investigated; see also Medina, Snedeker,
Trueswell, & Gleitman, 2011; Sumarga & Namy, 2010) empirical
question to distinguishing hypothesis-testing and associative mod-
els of cross-situational learning.

The perhaps key point is that although co-occurrence matrices
seem a dumb form of knowledge (Keil, 1992), they contain much
latent and usable structure that is realized in the decision process.
As we demonstrate in the decision component simulations, choice
at test can be related to multiple associations within the matrix

because the association matrix itself is a system of associations
between words and referents (also see Yoshida & Smith, 2005; Yu,
2008). In the present case, the decision—given a word and four
choices—depends on selecting the referent with the highest asso-
ciation probability with the word. Yet, even here, there are rela-
tions within the matrix that may be captured in that seemingly
simple decision. More generally, a single word–referent pairing is
correlated with all the other pairings that share the same word (in
the same row with that word) and all the other pairings that share
the same referent (in the same column with that referent), which
are in turn correlated with more word–referent pairs—the whole
system of them. Imagine, in an association matrix, when a word is
used to query the corresponding referent, many cells in the row
sharing that word might be activated or retrieved, and those acti-
vations would further light up other cells as well. In this way, this
initial query can be propagated to many cells in the association
matrix, and each decision captures to a degree the joint information
from all associations in the matrix. In brief, these sparse matrices
can be viewed as latent knowledge about the lexical system as a
whole, latent knowledge that plays out as a system at time of test.

Conclusion

Also evident in Figure 3, if we deliberately choose the number
of pairs selected in each model to best fit individual learning
conditions, then by adjusting this one single parameter, both of the
models can be made to fit the learning conditions almost perfectly.
This emphasizes, again, the importance of the empirical question
of just how much information a learner picks up on each trial. This
observation lies in the fact that even with the same learning
machinery, simply manipulating the amount of the information fed
to the learning device can dramatically change the learning per-
formance. Information selection gives the models flexibility to
simulate a range of learning results.

HTMs typically are thought of as focusing on a single hypoth-
esis at a time and thus just being highly selective but principled; in
contrast, associative models are often thought of as being unselec-
tive and unprincipled in their selection (although filtering effects
are common in sophisticated associative models; e.g., Kruschke,
2001; Mackintosh, 1975). However, the question of how much
information is picked up or how much past learning filters new
learning is, strictly speaking, not a core distinction between hy-
pothesis testing and associative learning since both kinds of mod-
els can be made both with and without those add-on components.
We show this in the next section, as we examine the role of
different principles of selection on the two types of models.

Information Selection—Principled Selection
Across Trials

To investigate how information selection across trials may in-
teract with associative learning versus hypothesis testing, we ex-
amined three broad ways in which learning from previous pairs
could affect pair selection on subsequent trials: (a) no influence—
that is, random selection as in the previous simulations; (b) a bias
for familiarity (narrow selection)—the learner pays more attention
to words and referents to which it has paid attention before,
building a small set of correct word–referent pairings before mov-
ing on to other pairs; and (c) a bias for novelty (broad selection)—
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the learner accumulates nonoverlapping word–referent pairs from
one trial to the next by being biased to select novel words and
novel referents in a new trial. We examined these cross-trial
dependencies in DAM and HTM with one-pair selection per trial
because one-pair selection leads to the greatest differences be-
tween the models.

In HTM, a list of nonconflicting hypotheses is maintained such
that each word or referent occurs at most once in the list. Under the
familiarity bias, the system will try to select new pairs that max-
imize the overlap in the current list; thus, a learner will tend to
select a pair with one item (either the word or the referent) that is
already in the current list. By doing so, this pair selection provides
immediate confirming or disconfirming evidence to the existing
hypotheses that might enable HTM to quickly learn those pairs.
For the novelty bias, the learner is biased to select pairs that are not
in the current list, more broadly gaining knowledge about a variety
of pairs but weaker knowledge about any particular one. In DAM,
the implementation of the familiarity bias is to pay more attention
to a pair with a stronger association up to the threshold at which it
is considered learned and then to select other pairs (which, by the
way, is also the pattern that characterizes infant preferential look-
ing—from a bias to familiar objects early in learning to a bias for
novel ones later; Hunter & Ames, 1988; Roder, Bushnell, &
Sasseville, 2000). Under the novelty bias, the learner pays more
attention to novel words and novel referents from the beginning.

Figure 4 shows the results: HTM and DAM show qualitatively
different effects of the different selection strategies in the 3 � 3
and 4 � 4 conditions. Overall, HTM, again, does much better than
DAM, particularly given fewer word–referent pairs to learn (the

two 4 � 4 9 words conditions). Moreover, under conditions of
higher uncertainty, the familiarity bias results in the best learning
performance for HTM, and the novelty bias results in the poorest
(e.g., in 4 � 4 18 words/6 repetitions, MHTM_familiarity � 0.62,
MHTM_novelty � 0.38). A novelty bias is not well suited to hypoth-
esis testing as it encourages the selection of pairs not in the list and,
consequently, most pairs in the list do not get opportunities to be
well evaluated by the end of training. In this sense, under a novelty
bias, HTM moves toward functioning like dumb associative learn-
ing, basically just counting word–referent co-occurrences without
any additional evidence that can be used to evaluate those hypoth-
eses. Notice, therefore, that a human learner with hypothesis-
testing machinery but a novelty bias might look like an associative
learner. Indeed, HTM with a novelty bias and DAM with a
novelty bias do not differ (e.g., in 4 � 4 18 words/6 repetitions,
MHTM_novelty � 0.38, MDAM_novelty � 0.39), supporting the idea
that under a novelty bias, HTM and DAM are essentially the same.
DAM, in marked contrast to HTM, is entirely unaffected by these
selection strategies, doing just as well (or not as well) under a
familiarity or novelty bias in all conditions (e.g., in 4 � 4 18
words/6 repetitions, MDAM_familiarity � 0.40, MDAM_novelty �
0.39). It is not, however, that DAM builds the same knowledge
under the two biases. Under the familiarity bias, DAM builds a
sparse matrix with many zeros, gaining more certainty about a
small subset of pairs. At test, DAM with a familiarity bias can
easily pick the correct referents of this small set of words but
meanwhile has to guess an answer for many other words for which
it does not have any knowledge. Under the novelty bias, DAM
accumulates more statistics but all with less certainty. However, a
more knowledgeable guess at test (with partial statistical knowl-
edge) makes the model perform as well as the one with a small set
of more certain pairs. Therefore, the overall performance in the
two cases is pretty much the same. Associative learning builds the
latent knowledge in a system of co-occurrence data, which in turn
yields reasonable and robust (albeit not perfect) performance under
different forms of data selection.

In summary, variations in pair selection again show associative
learning and hypothesis testing to be different kinds of learning
mechanisms. The amount of information—but not so much which
information—matters to associative learners as they accumulate
over trials the co-occurrence statistics. Performance from this
learning machinery is also robust across different learning condi-
tions and is quite good from quite sparse matrices, as the matrix as
a whole contains considerable latent information about the under-
lying structure. The amount of information matters less to the
HTM, but the kind of information matters more, although effects
of the kind of information are muted by the internal machinery that
filters noncompatible information.

To summarize the results so far, the two models do reasonably
well and roughly simulate adult learning in the Yu and Smith
(2007) tasks. Furthermore, with a specific set of selection param-
eters, each model can be made to fit human learning in the
individual learning conditions. However, no single combination of
model and selection strategy provides a particularly good fit across
all the learning tasks as a whole. This could accurately reflect the
play in the human system, with learners sometimes selecting more
or less information per trial (and perhaps in accord with different
strategies). Moreover, there are combinations of selection strate-
gies and models (DAM with three-pair selection and HTM with

Figure 4. A comparison of pair selection across trials with DAM and
HTM. DAM is not sensitive to pair selection, while HTM learns much
better with the familiarity principle that allows HTM to concentrate on
evaluating the current hypotheses in the list. DAM � dumb associative
model; HTM � hypothesis-testing model.
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one-pair selection, or DAM and HTM both with a novelty bias)
when the two different classes of models produce very similar
patterns of learning across various task conditions. Finally, HTM
with a novelty bias generates similar results as DAM. All this
yields the following preliminary conclusions: (a) HTM and DAM
are different models that are more or less successful in different
ways; (b) however, the same performance can be achieved by the
two models by varying aspects of selection that would seem to be
outside of the core claim about hypothesis testing or associative
learning; and (c) HTM can yield very different patterns of perfor-
mance depending on the selection strategy. The consideration of
decision-making strategies discussed next yields similar conclu-
sions for DAM.

Decision Making

At test, a statistical learning mechanism must retrieve the
knowledge acquired through statistical learning and make deci-
sions about individual words and pairs. The decision-making com-
ponent in HTM, like most hypothesis-testing theories (e.g., Snede-
ker, 2009), is straightforward as word–referent pairings are
decided during learning. As a result, HTM has explicit knowledge
about words and referents. At test, the model just needs to check
whether the tested word is correctly linked with the corresponding
referent in the final hypothesis list. In contrast, associative models
vary more widely as a class since their basic claim, the core of any
statistical learner, is that people learn co-occurrences. This basic
principle can be combined with different computational processes
at learning as well as different decision processes at test. Thus,
there are many ways within associative models to, in essence,
clean up association matrices—from learning correlations and
coherent co-covariation (McClelland & Siegler, 2001; Rogers &
McClelland, 2004) to calculating joint probabilities and competi-
tive processes (Fiser & Aslin, 2001). Then, given a stored matrix
of co-occurrence data, there are many ways to retrieve and make
decisions from those data. This is in direct contrast to HTM and its
straightforward decision-making process with almost no ambiguity
in the list of hypotheses: The pairs in the hypothesis list are treated
as correct, and the ones not in the list are treated as incorrect. In
contrast, the learning outcome in associative learning—an asso-
ciative matrix—retains considerably more information about the
statistics in the learning environment, statistics that could be uti-
lized in potentially different ways by different learners or, perhaps,
in different ways by the same learner in different tasks.

The next set of simulations offers a limited but (we believe)
telling exploration of how different decision-making processes
interact with DAM. The maximum-likelihood (ML) method de-
cides word–referent pairs at test using the strongest associations.
Given a test word, the model searches through all of the candidate
referents and selects the one that has the strongest association with
that word. An additional variant is based on ML but makes
probabilistic decisions (ML-P) instead of selecting a single stron-
gest association. For example, if the association probabilities of
A-a, A-b, and A-c are .55, .30, and .25, respectively, ML will
always select A-a, but ML-P will select probabilistically, meaning
that every referent has a chance to be selected depending on its
association probability. The hypothesis-testing decision method
(also shown in the Simulating Other Models section, below) first
converts an association matrix into a list of hypothesized pairs and

then uses those pairings to choose answers at test. Thus, whereas
a standard HTM forms and evaluates a list of hypotheses trial by
trial, DAM with a hypothesis-testing decision strategy at test
accumulates statistical co-occurrences first during training and
then extracts hypotheses. While both approaches generate a list of
hypotheses to be used at test, the difference between the two is
when the hypothesis-testing inference is applied. Finally, the ME
method implements the ME assumption at test: The learner on
each test trial considers not just which word is the most likely
associate for the referent being judged but also whether that
referent is the most likely associate of other words. The above
strategy can go further by examining whether those other words
are the most likely associates of other referents and so on. In this
way, an association matrix can be treated as a system of associa-
tions—not just a list of co-occurrences but a whole lexical network
in which one association is connected to many other associations
with shared words and referents.1

Figure 5 shows the simulation results for DAM with these four
approaches to retrieval and decision. The main result and key point
is that different decision processes—operating on the same learned
information—yield very different patterns of performance. The
ME method yields the most correct decisions about word–referent
pairs perhaps because this method is most in line with the core idea
of associative learning and takes advantage of both accumulating
a system of associations during training and utilizing the structure
in the whole matrix at time of test. The hypothesis-testing method
(which generates the same pattern that HTM does) does not do as
well as the ML and ME methods. Unlike these two, the hypothesis-
testing method does not make use of all the accumulated data in
the association matrix, which is the core strength of associative
learning. The ML-P method also may not make the best use of the
information in the stored matrices and (given its nature) may be
particularly hindered by the greater likelihood of spurious corre-
lations in word–referent pairs in small (in terms of the number of
words and referents) data sets. The differences between the dif-
ferent decision processes are nearly uniform across the Yu and
Smith (2007) tasks except for the ML-P method, which is due to
its greater dependence on the sparseness of the matrix (i.e., on how
nonzero cells are distributed in the 18 � 18 vs. 9 � 9 matrices).

In summary, DAM is a flexible model (or to put it more
negatively, chameleon-like and changeable). Associative learners
build co-occurrence matrices; once built, there is a great deal of
choice as to what might be done with the information. In this way,
DAM can take advantage of information-rich representations in an
association matrix and retrieve the accumulated statistical infor-
mation in various ways. By so doing, associative models gain the
flexibility to simulate different kinds of learning results with the
same underlying learning machinery. In contrast, the straightfor-
ward HTM with an explicit hypothesis list cannot leverage this

1 In implementation, for a test word j, object i is selected if and only if
both object i has a higher co-occurrence count (or association probability)
than other co-occurring objects maxiA(i, j) and for this selected object i, j �
maxmA(i, m), indicating that for object i, j is the most likely word. In the
case of m 	 j, that is, object i is more likely to be the referent of word m
(but not j), object i is excluded from being considered to be the referent of
word j, and the model considers the rest if and only if the selected one
satisfies the above criteria.
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flexibility in decision making. This brings us to the next set of
simulations, exploring the flexibility of these models to simulate
each other.

Simulating Other Models

The tradeoff between amount of data and computation has led
many to suggest that hypothesis testing better fits tasks requiring
rapid all-or-none learning from minimal data and associative learn-
ing better fits slower, graded, and incremental learning (Hollich et
al., 2000; Siskind, 1996; Thornton, 2002; Xu & Tenenbaum, 2007;
Zwaan & Ross, 2004). The present simulations generally fit this
characterization. Nonetheless, we found that similar learning re-
sults can be achieved by both models by adjusting specific com-
ponents in information processing. For example, HTM with a
novelty bias in across-trial information selection generates similar
performance as DAM. In addition, as we have already shown,
there is a straightforward (and psychologically plausible) way to
turn DAM into HTM, that is, to have DAM register and store
co-occurrences but then to test explicit hypotheses at time of test.
In the previous versions of DAM, the model selected the strongest
associated referent (the strongest cell, as shown in Figure 7A)
given the pairs being tested. However, when the hypothesis-testing
decision rule is used from the accumulated association matrix,
DAM demonstrates patterns just like HTM. Furthermore, as shown
in Figure 6, if we adjust just one more parameter in DAM—the
number of pairs selected within a trial (yielding better data—
therefore better learning—in the stored association matrix), DAM
can match HTM in terms of both the overall performance and the
trend across the learning tasks.

Now this might seem sleight of hand: HTM encounters data and
derives a hypothesis list, and the just-described version of DAM
encounters data, acquires an internally represented sampling of
that data in the form of an association matrix, and then derives a
hypothesis list. Have we not just made DAM a hypothesis-testing
mechanism? In a way, we have. The only difference between the
hypothesis-testing version of DAM and HTM is when hypothesis-
testing computations (that exclude some statistical information)

happen in a learning mechanism, during trial-by-trial learning or at
test. This is an approach taken by some hypothesis-testing theories;
for example, the Frank et al. (2009) model first builds a co-
occurrence matrix and then generates and evaluates hypotheses
from that matrix.

Yet there is a deeper importance than modeling convenience to
the question of whether people store co-occurrence data. The
question of what is learned and stored versus how and when
decisions are made in specific judgment tasks is a critical psycho-
logical question. A DAM learner who amasses co-occurrence data
but makes smart hypothesis-testing computations at test could also
show more graded judgments in other contexts, in other tasks, with
the same learned information. Furthermore, DAM learners who
just keep aggregating co-occurrences will (eventually) converge
on the real-world statistics (and potentially discover higher order
and latent regularities in the data). Hypothesis testing is powerful
because it filters information out. In the long run, dumb associative
learning, by not throwing data out, might prove more likely to
come up with right regularities in the end. This is a point perhaps
more important for explanations of real-world learning, such as
early vocabulary development, given the massive amounts of
relevant information in the learning environment, than for expla-
nations of experimental task performance. Moreover, some devel-
opmental theorists have suggested a general transition from more
associationist-like learning early in word learning to more
hypothesis-testing-like learning (Hollich et al., 2000). Knowing
where in the psychological system hypothesis testing happens (in
the learning mechanism when the data is stored vs. when the
system makes in-task decisions from stored data) is critical to
understanding these developmental differences.

A general associative model stores a whole association matrix
that changes as learning progresses. Therefore, a critical influence
on the learning outcome is the information that enters this matrix,
what we have called selection. Pieces of information in the matrix
may also mutually interact through various forms of competition
or augmentation. They might even be the input to some rationalist
Bayesian operations. In these ways and through other forms of
retrieval and decision processes, the same knowledge and the same
association matrix can yield different patterns of performance and
different learning outcomes that are more hypothesis-like versus
more association-like. As we noted earlier, one advanced HTM, a
Bayesian model (Frank et al., 2009), proposes that the learner has
acquired an association matrix and tests hypotheses on those
learned co-occurrences, which begs the question of whether hy-
pothesis testing and associative learning are indeed mutually ex-
clusive mechanisms of statistical learning.

In principle, one can also do the mimicking the other way
around, adjusting HTM to simulate the behaviors generated by
associative models. The core mechanism of hypothesis testing is
the rational excluding of information. In the present simple model,
HTM uses explicit inferences and the ME constraint to maintain a
short list of coherent hypotheses that necessarily excludes possible
word–referent associations to maintain a consistent hypothesis list.
This may get rid of spurious hypotheses, but it also gets rid of data.
There are at least two ways to adjust HTM to make it keep more
data and therefore be more association-like. First, as already dem-
onstrated, giving HTM a novelty bias during selection so that it
collects a little information about a lot of pairs without sufficient
information to exclude much information reduces HTM to DAM.

Figure 5. Different ways of retrieving lexical knowledge from accumu-
lated associations can generate different simulated behaviors across four
learning conditions, although the learning mechanisms are based on the
same associative principle. HT � hypothesis testing; ME � mutual exclu-
sivity; ML � maximum likelihood; ML-P � ML with probabilistic deci-
sions.
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Another variant of HTM that would mimic DAM would be if
HTM kept track of multiple hypothesis sets (Xu & Tanenbaum,
2007). By doing so, this type of HTM would accumulate multiple
systems of word–referent associations, and while the associations
within any set would be ME compliant, they would not be ME
compliant across different sets of hypotheses. From this perspec-
tive, this mechanism is similar to associative learning because
multiple co-occurring word–referent pairs—including competing
ones—are memorized and evaluated.

Certainly, the very nature of knowledge, what is learned in the
end, seems to be radically different in associative-learning and
hypothesis-testing accounts. For example, DAM builds a big two-
dimensional matrix that counts all experienced co-occurrences
between words and objects; in contrast, HTMs usually learn a short
list of word–referent pairings, although probabilistic Bayesian
accounts mimic associative accounts in retaining many hypothe-
ses, each associated with a probability (Thornton, 2002; Xu &
Tenenbaum, 2007). There are two ways to quantify these differ-
ences in possible representations: (a) the number of word–referent
pairs stored (and thus the information that is potentially retriev-
able, potentially influencing future learning, and relevant to deci-
sions) and (b) as probabilistic versus all-or-none representations.
As far as we can discern, there is no reason to believe that people
are limited in the number of co-occurrences (or hypotheses) that

they can register (and that can be shown to influence learning
performance). If there were a psychological advantage to short
hypothesis lists, one might expect there would be some number of
learned word–referent pairs beyond which learning would clearly
suffer (e.g., some threshold beyond perhaps 7 
 2). In the Yu and
Smith (2007) experiments, adult learners did quite well with 18
pairs to be learned, learning proportionally the same proportion as
when there were nine pairs to be learned (and thus actually
learning more individual word–referent pairs under the same de-
gree of within-trial uncertainty when learning 18 than when learn-
ing nine).

The second quantitative difference concerns the all-or-none
versus probabilistic learning of pairs. This is not an essential
difference between associative models and HTMs (see also Te-
nenbaum & Griffiths, 2001). Still, traditional conceptualizations of
hypothesis testing (and propositional knowledge more generally)
take a winner-take-all approach to what is known versus not
known, that is, a word refers to an object or it does not. In the
context of cross-situational learning of word–referent pairs, this
means that the pairs in the list are treated as all equally correct,
whereas the pairs not in the list are excluded from consideration.
Simple associative-learning models, like DAM, in contrast, store
the information in a probabilistic and graded way. Every co-
occurring word–referent pair is assigned to an association proba-

Figure 6. Top: From HTM to DAM. HTM with a novelty bias generates similar learning results as those from
DAM. Bottom: From DAM to HTM. DAM accumulates co-occurring statistics from training trials and then
extracts a hypothesis list by selecting strongest associations in the association matrix. The decisions at test are
based on the extracted hypothesis list. HT � hypothesis testing; HTM � hypothesis-testing model; DAM �
dumb associative model.
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bility based on co-occurrence frequency such that some pairs have
high probabilities and others are assigned with low probabilities.

Characterizing the differences between hypothesis-testing and
associative models in this way, however, reveals how associative
models can be converted into HTMs and how HTMs can be
converted into associative models. That is, a set of hypotheses can
be considered as a special type of associative representation with
the probabilities equal to either 1 or 0 but nothing in between, a
sparse and binary association matrix as shown in Figure 7b.
Similarly, even if lexical knowledge is stored in a probabilistic
mode in an association matrix, the associative learner will need to
make decisions at test. Processes at decision could force the
retrieval of only the strongest relevant associations, effectively
leading to a binary and sparse decision matrix. This might be
understood as extracting a hypothesis set from an association
matrix and thereby converting probabilistic associations into ex-
plicit hypotheses, as shown in Figure 7a. In doing so, different
thresholds used in the conversion may vary to determine the
number of pairs in the hypothesis set. Moreover, multiple compat-
ible hypothesis lists can be extracted in parallel from the same
association matrix to form more than one hypothesis set that can
better represent word–referent pairing information in a more prob-
abilistic way. Indeed, with some deliberation, a set of hypothesis
lists can store the same information as in an association matrix.

Although the representational forms posited by associative and
hypothesis-testing accounts seem fundamentally different and al-
though simple models instantiating these core ideas work differ-
ently and are affected in different ways by processes of informa-
tion selection and decision, it is remarkably easy—and in ways that
seem not central to the different core ideas—to get one model to
mimic the other through what seem like straightforward assump-
tions and thereafter literally turn one model into the other. One
begins to wonder whether these two kinds of learning mechanisms
are truly fundamentally different (see also Mitchell, De Houwer, &
Lovibond, 2009; Shank, 2010; Thornton, 2002) or whether they
reflect some large system of statistical learning that learns co-
occurrences but can self-organize to yield different knowledge and
learning outcomes via different selection and decision processes.

All statistical learners, whatever their other properties, begin
with co-occurrence data. Considerable evidence about human
learning (Griffiths & Mitchell, 2008; Hogarth, Dickinson, Austin,
Brown, & Duka, 2008; Kruschke et al., 2005; Yu & Smith, 2007)
also suggests that whatever else human learners might also do,
they register co-occurrence data. All statistical learners are also
more likely to link two events, say, a word and a referent, that
co-occur more often relative to less frequent co-occurrence events.
Thus, the two classes of models might be considered to differ in
the mere details of how co-occurrence data are used, that is,
differing in the operations that are performed on the data or in the
interactions within those co-occurrence data. The problem for
theorists as revealed in the present simulations is that those details
include selection and decision as well as the learning machinery
itself.

Neither performing well nor being able to emulate another kind
of learning mechanism is the proper metric for judging whether
any specific model or class of models provides an appropriate
explanation of human learning. What the simulations make clear is
that we cannot judge which class of models best describes human
performance without knowing more about the three separable steps
of information selection, learning machinery and storage, and the
retrieval and use of that information to formulate a response in
some test task. Put another way, given what we already know, we
cannot make much more progress by comparing some associative
model as a whole to some HTM as a whole in some demonstration
that such a model can do cross-situational learning or in some
comparison to the overall learning performance of humans from a
limited number of experimental tasks. Instead, we need to under-
stand what aspects of the model (from information selection to
core machinery to decision) make it work, and we need to con-
strain those component processes by empirical evidence from
humans about those very same component processes.

General Discussion

Associative models or HTMs start with fundamentally different
assumptions about learning, the learner, and the knowledge that is
the product of learning. The different assumptions underlie much
of the research (and many of the debates) about children’s early
word learning in general (Gleitman, 1990) and cross-situational
word learning in particular (Yu & Smith, 2007). Yet the core
assumptions that learners test hypotheses or store co-occurrence
data cannot stand alone. If the core assumptions are to account for
performance in tasks, they must be embedded in other cognitive

Figure 7. The association matrix representation in a dumb associative
model and the hypothesis list in a hypothesis-testing model seem to be
different, but these two representations are exchangeable. Panel a: From
association matrix to hypothesis list: By selecting a set of strongest asso-
ciations, an associative learner can build a hypothesis set from the associ-
ation matrix. Similarly, an association matrix can be decomposed into
several hypothesis sets, each of which forms a single and coherent list.
Panel b: A hypothesis set can be converted into an association matrix—a
sparse matrix wherein most cells are zeros and a very few of them are ones.
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processes—including information selection, retrieval, and deci-
sion. The simulations presented in this article show that those other
processes matter and that they interact with different learning
mechanisms in different ways that can make one model yield very
different learning outcomes depending on the kind of selection or
decision strategy employed and that can also make the learning
outcomes of the two different kinds of models very similar. This,
then, is the main contribution and conclusion of the simulations of
cross-situational statistical learning: Given what we already know
and what has been demonstrated from previous experiments and
modeling efforts based on this paradigm, what we can learn is
limited by demonstrating that some particular HTM or some
particular associative model can do statistical learning (because
already many models can) and by comparing the overall perfor-
mance of some statistical learning device to the overall perfor-
mance of humans from a limited number of experimental condi-
tions (since there are many ways to get the same overall
performance). Instead, we need to look at the components of
models to understand how they contribute; we need to measure
how those component processes in humans and in models contrib-
ute to overall learning. Furthermore, if we want to compare dif-
ferent fundamental claims about the core machinery—hypothesis
testing versus association—we need to do so by embedding those
core differences in models that are the same in their noncore
components, ideally with noncore components constrained by em-
pirical evidence on their operation. Critically, we also need new
forms of empirical research on cross-situational learning that move
beyond demonstrating that children and adults do this kind of
learning to studying the component processes. How selective is the
information picked up on a trial? Do children and/or adults store a
limited amount of information? Does this depend on both the task
and the age of the learner? Do different measures of learning
indicate different knowledge, a result that would suggest that
learners store co-occurrences but then use that knowledge in
different ways in different decision tasks? In sum, we cannot
distinguish between these two classes of theories without addi-
tional constraints from human experimental data on how informa-
tion is selected on learning trials, on how that might change over
the course of the task, on how it might depend on the specific task,
and on how decisions are made at test.

A Focus on Components

If we all agree that all contemporary candidate models are not
even close to perfect yet but that they nonetheless can be used to
explain various intriguing phenomena, then what we need is to
move to the second step in the enterprise—not just model fitting
but empirically examining the components of the model itself. This
would seem to be a useful first step to understanding exactly how
these two classes of theories differ or whether they might be better
understood within a single unified theoretical account of the pro-
cesses involved in selecting, storing, and making decisions about
experienced co-occurrences. By a focus on components (and their
interactions), we mean a deliberate move away from treating a
model as a whole package and a deliberate move away from the
main theoretical question (and the main point of modeling) being
to show that one grand idea or principle beats another (e.g.,
Bayesian probabilistic inference against association). Instead, our
understanding within each and across the two approaches will

benefit from decomposing the learning mechanism into individual
components, then asking the basic questions about how those
components work and answering those questions both empirically
and computationally. An understanding of those basic building
blocks and principles is critical to achieving the larger goals of a
unified scientific understanding of human statistical learning.

The present simulations provide a possible first step in this
direction by identifying several principles in information selection
(e.g., ME or familiarity or novelty across trials), information
computation/processing (counting co-occurrence, hypothesis-
based logic inferences), decision making at test (winner-take-all or
probabilistic), all of which merit study in their own right. In this
way, the simulations open empirically answerable questions. For
example, given previous empirical results (Kachergis et al., 2009;
Yu & Smith, 2007; Yurovsky & Yu, 2008) and the insights from
the present modeling, one might ask questions about just what
people know about competing pairs. If A co-occurs with a 100%
of the time, with b 60% of time (a spurious correlation in terms of
reference), but with c 40% of the time, do people—even those who
reliably pick A as referring to a—know that A might also refer
to b? Does it matter if learners are exposed to A-a first and then
A-b and A-c, or the other way around, A-b and A-c first and then
A-a? If people maintain only compatible hypotheses at test, can we
show that the co-occurrence statistics are still in the system
through such measures as savings in learning? One might also ask
how much information people are registering per trial and whether
it changes with learning, with how much information is presented
on a trial, with the level of ambiguity, the task, and the develop-
mental level of the learner. Along this line, one can ask those
questions in a broader context. For example, studying adult learn-
ers with cognitive deficit or children with atypical development
and investigating how their learning may break down under dam-
age and cognitive overload (Leech, Mareschal, & Cooper, 2008;
Thomas & Karmiloff-Smith, 2003) can generate informative em-
pirical evidence from complimentary perspectives to help us get a
more complete picture. In summary, by empirically answering
such questions, the constituent components and steps in model
building can be grounded in behavioral data.

A further theoretical question is whether individual components
should be treated separately or if they are so closely tied that there
is no clear interface between them. As shown in Figure 8, there are
different ways to group those basic building blocks together. This
by no means requires whole system modeling. Regardless of how
it is done, we need to understand the building blocks and how they
contribute to the observed outcomes. In brief, we need to study
how components function individually and how they are integrated
systematically. ME provides a good example of this issue. This
constraint goes by a number of names in the developmental liter-
ature—principle of contrast (Clark, 1990), the novel-name-
nameless-category principle (Golinkoff et al., 1992), the pragmatic
account (e.g., Diesendruck & Markson, 2001), and the logic-based
explanation of disjunctive syllogism (Halberda, 2006)—which re-
flect the varying assumptions about the different kinds of mecha-
nisms that might underlie the phenomenon. In Markman and
Wachtel’s (1988) classic experiment, a child is presented with a
known object (ball) and an unknown object (gyroscope) and is
asked by the experimenter to bring the “toma.” Having never heard
toma before, the child will select the novel object gyroscope as its
referent, but not the object ball for which the child already has a
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label. The ME constraint is thus a real empirical phenomenon that
is also a potent possible learning mechanism in that it reduces
uncertainty within the learning moment. Yet where and how in the
statistical learning system is ME functioning?

The present simulations show how ME can be understood as
operating within different components of the learning mechanism,
from information selection to information computation and deci-
sion making. The usual and straightforward way of implementing
ME is accomplished by HTM: Only those new hypotheses com-
patible with the ME constraint are allowed to be selected and
stored in the current hypothesis list. This real-time implementation
of ME in HTM is probably the most explicit and strongest form of
ME and also is in line with the macro-level experimental data from
children (Markman & Wachtel, 1988). Within an associative
model (e.g., Merriman, 1999; Yu, 2008), the ME constraint can
also be encoded in a more implicit way by using conditional
probabilities in statistical computation. Specially, multiple refer-
ents compete for the same word in that the sum of all association
probabilities conditioned on that word are constrained to equal to
1. Thus, if one referent obtains a relatively high probability, other
referents have to be forced to decrease their conditional probabil-
ities. This competition can lead to a winner-take-all phenomenon
in which one referent gains close to 1 probability or it may lead to
a distribution across two or more referents. The overall statistical
computation dynamically adjusts its solution with the goal to
optimize the whole data set. In this way, the implementation
through conditional probabilities can also be viewed as a proba-
bilistic (and soft) form of ME compared with the winner-take-all
implementation in the HTM. This characterization of ME fits
contemporary understanding of competitive processes in lexical
access (Levelt, 2001; L. B. Smith et al., 2010). Finally, within even
a simple associative model such as DAM, the ME constraint can
also be implemented in decision making, restricting the model
from selecting the same word twice for different referents at test.
Therefore, even if the association matrix—the knowledge the
system represents—does not look ME compatible, performance
might still be. The present simulations suggest that the ME con-
straint is needed—somewhere—to simulate human performance.
HTM is built upon the ME constraint, and this may be the single

key to its success. Yet ME is easily added to other kinds of models.
Accordingly, the key empirical question to be answered is not
whether hypothesis-testing or associative models work better as a
whole model but, rather, what the processes and mechanisms that
implement ME in humans are.

Open Questions About Cross-Situational Word
Learning

Experimental research on cross-situational learning is in its
early stages, just beginning to move beyond demonstrations. There
is a great deal not known that will be critical to both model
building and evaluation, and the present simulations suggest sev-
eral avenues for empirical research. One open question concerns
the flexibility within individuals as to the kind of learning that they
do. The simulations suggest a tradeoff between amount of infor-
mation registered and the powerful computations that are done on
that information. If a learner gathers lots of data, powerful com-
putations seem less necessary. So, does an individual learner look
like a co-occurrence counter with large data sets (say, learning real
words in the world) but like a hypothesis tester when faced with
limited data in a problem-solving task (say, learning an artificial
word from a few examples in the laboratory)? How much do
learners move around their learning mechanisms to fit the task at
hand? The play in these models with respect to such factors as
information selection and decision suggest that there might be
similar play in learners’ cognitive systems. There is nothing that
we know of in the empirical literature on human cognition that
suggests otherwise.

It is also possible that there are multiple mechanisms with
different selection rules, different computations and kinds of stor-
age, and different decision processes. That is, human statistical
learning mechanisms, like many other processes, may not be one
mechanism but may be broadly implemented but in somewhat
different ways throughout the cognitive and neural systems. If so,
research needs focused studies on how the learning system orga-
nizes itself across tasks and on how different components might be
functionally connected in different ways in different tasks. Like-
wise, an understanding of statistical learning—and a unified ac-

Figure 8. There are several fundamental building blocks in a model, including information selection, statistical
computation, information representation, and decision making. With each component, we investigate different
solutions/ways to process, store, and retrieve statistical knowledge. Moreover, some of those components may
not be truly separable. Thus, two components may interact so closely so that they should be treated as one instead
(as illustrated by dot boxes). Therefore, we advocate more empirical and computational studies to specify the
component processes within each component and, more importantly, to better understand how those components
are integrated. HT � hypothesis testing.
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count of that learning—might benefit from the study of individual
differences in these tasks. Instead of treating individual differences
as the error in statistical analyses and instead of ignoring the data
from participants who fail to learn, one might attempt to use these
data to decode the general learning process (McDaniel, Dimperio,
Griego, & Busemeyer, 2009; Myung, 2000). The present simula-
tions suggest the value of such an endeavor in that they show that
relatively small changes in core processes may result in more
dramatic changes in performance. A unified theory that uses in-
teractions among components may give us deeper insights into the
prowess—and limitations—of human statistical learning.

The approach to theory building and the challenges advocated
here may also help us bridge the gap between macro and micro
levels of explanation. At present, although there are many models
that easily fit the overall performance in a statistical learning task
(Fazly, Alishahi, & Stevenson, 2010; Fontanari, Tikhanoff, Can-
gelosi, Ilinc, & Perlovsky, 2009; Frank et al., 2009; Siskind, 1996;
K. Smith et al., 2006; Yu et al., 2005), there are few models that
attempt to simulate more fine-grained micro-level behavioral data.
However, recent advances in sensing techniques enable research-
ers to collect dense, real-time, and multimodal human behavioral
data, such as eye-movement data (Hayhoe & Ballard, 2005) and
body movements (von Hofsten, 2004). Moreover, psycholinguistic
and psychophysics studies already provide compelling evidence at
the sensorimotor level of eye movements about real-time compet-
itive processes (Allopenna, Magnuson, & Tanenhaus, 1998; Reh-
der & Hoffman, 2005; Rehder & Murphy, 2003; Tanenhaus,
Spivey-Knowlton, Eberhard, & Sedivy, 1995). In the context of
cross-situational learning, one can collect and analyze the learner’s
momentary eye-movement data (L. B. Smith & Yu, in press; Yu &
Smith, in press). If a subject’s looks indicate the information the
internal learning device is gathering, then eye-movement data
could provide direct insights into the information selected and also
into a learner’s internal state. Along this line, in the literature of
concept learning, a fairly sophisticated set of experimental designs
were developed to address issues about whether concepts were
being learned gradually or all-or-none and whether people tracked
more than one hypothesis trial by trial (Bower, 1961; Levine,
1966; Trabasso & Bower, 1968; Watson, 1968). One way of
testing these models was to look at the trial-by-trial learning results
and the error profiles. In the context of statistical learning, gath-
ering trial-by-trial decisions may alter the statistical learning strat-
egies that people use otherwise in continuous learning; this is
possible because, for participants to make trial-by-trial decisions,
they have to explicitly retrieve information trial by trial, and this
retrieving process may interfere with the accumulation of statisti-
cal evidence. Nowadays, we may be able to work around this
problem using measures such as momentary eye tracking, which
may provide an uninterrupted way to access the learner’s internal
state in real time without the interference of ongoing cognitive
learning processes, if we can link the learner’s external visual
attention with the internal ongoing learning process. Recently, the
research reported in Yu and Smith (in press) used an eye tracker to
record the moment-by-moment eye-movement data of 14-month-
old infants in cross-situational statistical learning tasks. A set of
gaze patterns in the course of trial-by-trial learning was extracted
and used to predict strong and weak learners—those babies dem-
onstrating more successful learning at test and those who were less
successful. The results from this fine-grained data analysis shed

light on what kind of selective attention may lead to better statis-
tical learning. With advances in the direction of micro-level data
analysis, a componential and psychological approach to modeling
would seem essential to unifying behavioral data at this micro
level with grand claims about the fundamental nature of the
learning mechanism.

Conclusion

The tension between associative learning and hypothesis testing
is one with a long history in psychology and in theories of
computation. Others have suggested that they are fundamentally
the same process, that they are not firmly separated, and also that
one can make associative learning, though not the same as hypoth-
esis testing, approximate other forms of learning well enough
(Bower & Winzenz, 1970; Mackintosh, 1975; Shank, 2010; Thorn-
ton, 2002). We cannot resolve these possibilities here, not even
within the more restricted bounds of cross-situational word learn-
ing. We cannot because we do not know about the psychological
processes that select information, that register and aggregate in-
formation across trials, and that retrieve and make decisions about
that stored information, and because, as we have shown here, these
components interact in complex ways that yield very different
outcomes. Consequently, given the interactions among these com-
ponents, there is more than one way to get the same learning
outcome. Given what we already know through previous empirical
and modeling studies, there is at present, in the domain of cross-
situational word–referent learning, no point in making grand
claims about the fundamental nature of the learning, in demon-
strating that some particular kind of model can do this learning as
lots of different models can, and in comparing one model as a
representative of its class to another as a representative of its class.
These kinds of debates must wait for better data and models
focused on all the steps and their interactions that matter to
learning mechanisms. The empirical and theoretical approach ad-
vocated here—a focus on comparable and well-specified compo-
nents in both experiments and models—may provide a rich test
bed for understanding just what the fundamental differences are
between hypothesis testing and associative learning and whether
they can be viewed as different instances of the same learning
machinery.

References

Akhtar, N., & Montague, L. (1999). Early lexical acquisition: The role of
cross-situational learning. First Language, 19, 347–358. doi:10.1177/
014272379901905703

Allopenna, P., Magnuson, J., & Tanenhaus, M. (1998). Tracking the time
course of spoken word recognition using eye movements: Evidence for
continuous mapping models. Journal of Memory and Language, 38,
419–439. doi:10.1006/jmla.1997.2558

Anderson, J. A. (1970). Two models for memory organization using
interacting traces. Mathematical Biosciences, 8, 137–160. doi:10.1016/
0025-5564(70)90147-1

Anderson, J. R. (1978). Arguments concerning representations for mental
imagery. Psychological Review, 85, 249 –277. doi:10.1037/0033-
295X.85.4.249

Anderson, J. R., & Bower, G. H. (1973). Human associative memory.
Washington, DC: Hemisphere.

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of

36 YU AND SMITH



conditional probability statistics by 8-month-old infants. Psychological
Science, 9, 321–324. doi:10.1111/1467-9280.00063

Baum, E. B. (1989). A proposal for more powerful learning algorithms.
Neural Computation, 1, 201–207. doi:10.1162/neco.1989.1.2.201

Billman, D., & Knutson, J. (1996). Unsupervised concept learning and
value systematicity: A complex whole aids learning the parts. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 22, 458–
475. doi:10.1037/0278-7393.22.2.458

Bloom, P. (2000). How children learn the meaning of words. Cambridge,
MA: MIT Press.

Bower, G. H. (1961). Application of a model to paired-associate learning.
Psychometrika, 26, 255–280. doi:10.1007/BF02289796

Bower, G. H., & Winzenz, D. (1970). Comparison of associative learning
strategies. Psychonomic Science, 20, 119–120.

Carey, S. (1978). The child as word learner. In M. Halle, J. Bresnan, &
G. A. Miller (Eds.), Linguistic theory and psychological reality (pp.
264–293). Cambridge, MA: MIT Press.

Chun, M., & Jiang, Y. (1999). Top-down attentional guidance based on
implicit learning of visual covariation. Psychological Science, 10, 360–
365. doi:10.1111/1467-9280.00168

Clark, E. V. (1990). On the pragmatics of contrast. Journal of Child
Language, 17, 417–431.

Colunga, E., & Smith, L. (2005). From the lexicon to expectations about
kinds: A role for associative learning. Psychological Review, 112, 347–
382. doi:10.1037/0033-295X.112.2.347

Colunga, E., Smith, L., & Gasser, M. (2009). Correlation versus prediction
in children’s word learning: Cross-linguistic evidence and simulations.
Language and Cognition, 1, 197–217. doi:10.1515/LANGCOG
.2009.010

Diesendruck, G., & Markson, L. (2001). Children’s avoidance of lexical
overlap: A pragmatic account. Developmental Psychology, 37, 630–
641.

Fazly, A., Alishahi, A., & Stevenson, S. (2010). A probabilistic computa-
tional model of cross-situational word learning. Cognitive Science: A
Multidisciplinary Journal, 34, 1017–1063.

Fiser, J., & Aslin, R. (2001). Unsupervised statistical learning of higher-
order spatial structures from visual scenes. Psychological Science, 12,
499–504. doi:10.1111/1467-9280.00392

Fisher, C., Hall, D., Rakowitz, S., & Gleitman, L. (1994). When it is better
to receive than to give: Syntactic and conceptual constraints on vocab-
ulary growth. Lingua, 92, 333–375.

Fontanari, J. F., Tikhanoff, V., Cangelosi, A., Ilinc, R., & Perlovsky, L.
(2009). Cross-situational learning of object-word mapping using neural
modeling fields. Neural Networks, 22, 579 –585. doi:10.1016/
j.neunet.2009.06.010

Frank, M. C., Goodman, N. D., & Tenenbaum, J. B. (2009). Using
speakers’ referential intentions to model early cross-situational word
learning. Psychological Science, 20, 578 –585. doi:10.1111/j.1467-
9280.2009.02335.x

Gleitman, L. (1990). The structural sources of verb meanings. Language
Acquisition, 1, 3–55. doi:10.1207/s15327817la0101_2

Gleitman, L., Cassidy, K., Nappa, R., Papafragou, A., & Trueswell, J.
(2005). Hard words. Language Learning and Development, 1, 23–64.
doi:10.1207/s15473341lld0101_4

Golinkoff, R. M., Hirsh-Pasek, K., Bailey, L., & Wenger, N. (1992).
Children and adults use lexical principles to learn new nouns. Develop-
mental Psychology, 28, 99–108. doi:10.1037/0012-1649.28.1.99

Golinkoff, R. M., Jacquet, R., Hirsh-Pasek, K., & Nandakumar, R. (1996).
Lexical principles may underlie the learning of verbs. Child Develop-
ment, 67, 3101–3119. doi:10.2307/1131769

Golinkoff, R. M., Mervis, C. B., & Hirsh-Pasek, K. (1994). Early object
labels: The case for a developmental lexical principles framework.
Journal of Child Language, 21, 125–155. doi:10.1017/
S0305000900008692
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