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What you learn is what you see: using eye movements to study
infant cross-situational word learning
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Abstract

Recent studies show that both adults and young children possess powerful statistical learning capabilities to solve the word-
to-world mapping problem. However, the underlying mechanisms that make statistical learning possible and powerful are not yet
known. With the goal of providing new insights into this issue, the research reported in this paper used an eye tracker to record
the moment-by-moment eye movement data of 14-month-old babies in statistical learning tasks. Various measures are applied to
such fine-grained temporal data, such as looking duration and shift rate (the number of shifts in gaze from one visual object to
the other) trial by trial, showing different eye movement patterns between strong and weak statistical learners. Moreover, an
information-theoretic measure is developed and applied to gaze data to quantify the degree of learning uncertainty trial by trial.
Next, a simple associative statistical learning model is applied to eye movement data and these simulation results are compared
with empirical results from young children, showing strong correlations between these two. This suggests that an associative
learning mechanism with selective attention can provide a cognitively plausible model of cross-situational statistical learning.
The work represents the first steps in using eye movement data to infer underlying real-time processes in statistical word learning.

Introduction

There is growing interest in the idea of language learning
as a form of data mining. Structure that is not obvious in
individual experiences or small bits of data is derivable
from statistical analyses of large data sets (Landauer &
Dumais, 1997; Li, Burgess & Lund, 2000; Steyvers &
Tenenbaum, 2005; Chater & Manning, 2006). These
techniques have been shown to be powerful in capturing
syntactic categories (Mintz, Newport & Bever, 2002;
Monaghan, Chater & Christiansen, 2005), syntactic
structures (Elman, 1993; Solan, Horn, Ruppin & Edel-
man, 2005) and word boundaries (Christiansen, Allen &
Seidenberg, 1998). Also growing are suggestions (as well
as relevant evidence) that statistical learning character-
izes early language learning and that infants and young
children are powerful statistical learners who make what
seem to be sophisticated statistical inferences from even
quite limited data (Saffran, Aslin & Newport, 1996;
Newport & Aslin, 2004; Xu & Tenenbaum, 2007) .

What is not so clear, however, is the nature of under-
lying statistical learning mechanisms. The working
assumption seems to be that learners first accumulate,
more or less comprehensively, the data that are available
and then apply special statistical computations to that
data (Siskind, 1996; Xu & Tenenbaum, 2007; Frank,
Goodman & Tenenbaum, 2009). In this paper, we
explore moment-by-moment attention of infants in one

kind of statistical learning task and find that statistical
learning is itself tightly linked to the momentary
dynamics of attention and when the momentary
dynamics of attention are considered, cross-situational
statistical learning is explainable by simple associative
mechanisms. The results suggest that momentary selec-
tive attention in the course of statistical learning is both
dependent on and indicative of learning. The experi-
ments specifically concern infants’ cross-situational
learning of names and referents. We use eye-tracking
measures of attention during individually ambiguous
training trials and data-mine such fine-grained temporal
data to discover reliable patterns that are predictive for
successful learning. To better understand the link
between individual attentional patterns, we use an asso-
ciative model that links individual differences in looking
patterns to individual differences in learning.

The findings are relevant to one of the most funda-
mental problems in word learning. Mapping meanings
onto their corresponding lexical forms in naturalistic
environments is hard in that often there are many pos-
sible referents and many possible words simultaneously
present at any single learning moment. Moreover, there
are different kinds of words with different kinds of
meanings: some words refer to concrete meanings, such
as object names; some refer to more abstract noun
meanings such as idea and thought; some refer to verbs,
adjectives and spatial terms, and others may be function
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words and not referential at all. How do children acquire
the meaning of various kinds of words? Gleitman and
colleagues (Snedeker & Gleitman, 2004; Gleitman, Cas-
sidy, Nappa, Papafragou & Trueswell, 2005) suggested
that the learning input for word acquisition is much
broader and more varied than previously acknowledged
to the degree that the major problem for word learning is
not a ‘poverty of the stimulus’ (Chomsky, 1959) but a
‘richness of the stimulus’.

It is well accepted that this rich input requires con-
straints to reduce the degree of ambiguity. In the case of
object name learning, those constraints include atten-
tional biases to attend to the shape of the whole object
(Landau, Smith & Jones, 1988), conceptual biases that
make some kinds of word-meaning mappings more likely
than others (Gelman & Taylor, 1984; Markman, 1990;
Golinkoff, 1994; Golinkoff, Jacquet, Hirsh-Pasek &
Nandakumar, 1996; Klibanoff & Waxman, 2000; Booth
& Waxman, 2002), and by all sorts of linguistic boot-
straps whereby children use the words and linguistic
structures they already know to help figure out new
meanings (Gleitman, 1990; Naigles, 1990; Newport,
1990; Fisher, Hall, Rakowitz & Gleitman, 1994; Imai &
Gentner, 1997; Monaghan et al., 2005). At the macro-
level, we know a great deal about what those constraints
are and how they work individually. However, at the
micro process level, we are only beginning to understand
how they work in real time and how a general learning
process integrates and coordinates multiple constraints
and cues (Merriman & Stevenson, 1997; Hollich, Hirsh-
Pasek, Golinkoff, Brand, Brown, Chung, Hennon &
Rocroi, 2000; Halberda, 2003; Snedeker & Gleitman,
2004; Halberda, 2006; Swingley & Aslin, 2007). The
purpose of the present study is to contribute to an
understanding of the micro-level processes that support
real-time learning using object name learning from
multiple ambiguous cross-situational observations as a
case study. We selected object name learning because
compared with learning other kinds of words with more
abstract meanings, the basic-level word–object mappings
are relatively concrete and learning itself, at least by very
young children, is less likely to be influenced by high-
level conceptual components. Although one would like a
micro-level real-time account of conceptual influences as
well, it seems prudent to start at a more concrete level.
Thus we focus on one fundamental component of early
noun learning: mapping words to candidate referents.

The general learning paradigm used here is cross-
situational word learning. Accruing information about
name–object pairings across individual learning experi-
ences has been proposed as a solution to the uncertainty
inherent in trying to learn nouns from their co-occur-
rences with scenes (Siskind, 1996; Yu & Smith, 2007;
Smith & Yu, 2008). Scenes typically contain many pos-
sible referents, with speakers talking about and shifting
their attention rapidly among the potential referents.
This uncertainty is still considerable even if one assumes
that a learner is biased to link names to whole objects

(Markman, 1990). For example, a young learner may
hear the words ‘bat’ and ‘ball’ in the ambiguous context
of seeing both a BAT and BALL without any informa-
tion as to which word refers to which scene element.
However, although the learner may have no way of
knowing from any such single learning situation which
word goes with which referent, the learner could none-
theless determine the right mappings if the learner kept
track of co-occurrences and non-occurrences across sit-
uations, and evaluated the cross-situational evidence for
word–referent pairings in the proper way. Using the
above example, if the learner viewed a second scene while
hearing the words ‘ball’ and ‘dog’ and if the learner could
remember and combine the conditional probabilities of
co-occurrences from the two situations, the learner could
correctly infer that ‘ball’ maps to BALL.

In a recent study, Smith and Yu (2008) showed that
12- and 14-month-old babies do this. They presented the
infants with learning trials on which there were always
two seen objects and two heard names but no informa-
tion as to which name went with which object. From
such individually ambiguous learning trials, the infants
learned the mappings of six names to six objects and did
so in a learning experience that lasted in total less than
4 minutes. The cross-trial word–referent statistics were
the only information available to disambiguate those
word–referent pairings. Thus the infants must have
combined the information across trials. The present
question is the nature of the processes that underlie this
learning.

One way to attempt to understand this process is to
start with the simplest mechanisms that are known to
exist in the human and infant learning repertoire and see
how well these simple and known mechanisms can do.
One such possible learning process is Hebbian-like
associative learning, a form of learning known to be
fundamental to many perceptual and cognitive capabili-
ties (Smith, 2000). In the present case, the learner could
simply store all associations between words and refer-
ences. With respect to the above example, if the learning
system stored only associations between words and
whole objects, there would be four associations formed
on trial one (bat to BAT, bat to BALL, ball to BAT, ball
to BALL). On the second experience containing the
words ‘ball’ and ‘dog’ and the objects BALL and DOG
(with four possible associations between them), one of
the associations (ball to BALL, etc.) would be
strengthened more than the others. Across trials, the
relative strengths of associations between words and
their potential referents would come to reflect the correct
word–referent mappings. Simple associative models such
as this have been criticized on the grounds (Keil, 1992)
that there are just too many possible associations across
situations to store and to keep track of.

This raises the key question for the present study,
whether learners do not actually store all co-occurrences,
but only some of them. Further, we ask whether infants’
attention to and thus selective storage of word–referent
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pairs might be guided by their previous experience. And
if this is so, could eye movement patterns in training be
straightforwardly predictive of successful learning at
test? If all that matters for what is learned in this task is
the simple co-occurrence of looking at an object while
hearing its name, then the eye movement patterns should
straightforwardly predict learning. To provide further
evidence relevant to this idea, we also ask whether a
simple associative model based on gaze data could
explain not only infants’ overall success in learning in
this task but also individual differences in that learning.
However, if looking does predict learning, then we need
to know more about the looking patterns themselves.
Accordingly, a major component of the present study is a
deeper understanding of the dynamics of those looking
patterns, how they change over the course of the learning
trials, and how they relate to individual differences in
learning outcomes. The issue of individual differences is
particularly critical if infants are not simply passive
accumulators of data but instead actively learn by
selecting among the available data. If infants select some
pairings over others to notice and store – and if these
pairings guide later selections – then individual learners
may distort the regularities in the input both in ways that
enhance the learning of the right word–referent pairs and
in ways that hinder them. In brief, although we use a
simple (and minimal) associative model to link looking
to learning, the main goal of this work is an under-
standing of real-time attentional processes that lead to
learning.

Our empirical approach, then, is to continuously track
eye-gaze direction throughout learning. The assumption
here is that when a learner associates a word with a ref-
erent among other simultaneously presented referents,
the learner is likely to be looking at that referent and this
looking behavior indicates that the learner registers this
word–object association. In this way, different learners
may attend to different referents in a visual scene when
hearing the same word. Further, by the assumption that
learners link the word to the object they are attending to
at that moment, these differences in attention will lead
directly to different learning results.

Recent psycholinguistic studies already suggest that
speech and eye movements are closely linked in both
language comprehension and production (Tanenhaus,
Spivey-Knowlton, Eberhard & Sedivy, 1995; Griffin &
Bock, 1998; Meyer, Sleiderink & Levelt, 1998; Griffin,
2004; Trueswell & Gleitman, 2004; Huettig & Altmann,
2005; Knoeferle & Crocker, 2006). For example, Griffin
and Bock (1998) demonstrated that speakers have a
strong tendency to look toward objects referred to by
speech and that words begin roughly a second after
speakers gaze at their referents. Meyer et al. (1998) found
that when speakers were asked to describe a set of objects
from a picture, they usually looked at each new object
before mentioning it, and their gaze remained on the
object until they were about to say the last word about
it. Several recent developmental studies, though not

addressed to the specific questions in this paper, have
shown the utility of using these finer-grained real-time
measures in studies of early development and learning
(von Hofsten, Vishton, Spelke, Feng & Rosander, 1998;
Johnson, Amso & Slemmer, 2003; Aslin & McMurray,
2004; Trueswell & Gleitman, 2004; Halberda, 2006;
Plunkett, Hu & Cohen, 2008). Motivated by those
studies, we also apply this eye-tracking paradigm to early
word–referent learning and use eye movements, and the
synchrony of those movements with respect to the heard
object names, as a measure of moment-by-moment
learning and as a clue to the momentary internal states
of the learner.

Method

The stimuli used are exactly the same as those in Smith
and Yu (2008) and the overall procedure is also very
similar. Therefore, we expect to replicate these previous
results, that from individually ambiguous learning trials,
infants nonetheless learn the underlying word–referent
pairings. More importantly, the present study records
moment-by-moment eye movement data while infants
are engaged in statistical learning. Such fine-grained
data are used to generate new results and new insights
into the underlying mechanisms, and more specifically
to test the idea that an associative learning model with
selective attention to some pairings can explain this
learning. Further, our data analysis and computational
modeling provide a strong test of this proposal by
providing evidence on both the group and individual
learner levels.

Participants

The final sample consisted of 18 14-month-olds (10 boys,
eight girls), with a mean age of 14.2 (SD = 0.5) months.
An additional 14 infants were tested but not included in
the sample due to fussiness (n = 4), persistent inattention
to the display (n = 2), and mostly occasional but large
movements that prohibited the complete collection of
continuous eye movement data with the eye tracker
(n = 8).

Stimuli

The six ‘words’ bosa, gasser, manu, colat, kaki and regli
were designed to follow the phonotactic probabilities of
American English and were recorded as single-word
utterances by a female speaker in isolation. They were
presented to infants over loudspeakers. The six ‘objects’
were drawings of novel shapes; each was a unique bright
color. On each trial, two objects were simultaneously
presented on a 17-inch computer monitor. The projected
size of each object is 7.6 · 6.4 cm (7.2 · 6.1� visual angle
at the infant’s 60-cm viewing distance) separated by
11.4 cm.
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There were 30 training slides. Each slide simulta-
neously presented two objects on the screen for 4 sec; the
onset of the slide was followed 500 ms later by the two
words – each said once with a 500-ms pause between.
Across trials, the temporal order of the words and the
spatial order of the objects were varied such that there
was no relation between the temporal order of the words
and the spatial position of the referents. Each correct
word–object pair occurred 10 times. The two words and
two objects appearing together on a trial were randomly
determined such that each object and each word co-oc-
curred with every other word and every other object
at least once across the 30 training trials (thereby creating
the within-trial ambiguities and possible spurious cor-
relations). The first four training trials each began with
the centered presentation of a Sesame Street character (3
sec) to orient attention to the screen. After these first
four trials, this attention-grabbing slide was interspersed
every 2–4 trials to maintain attention. The entire training
– an effort to teach six word–referent pairs – lasted less
than 4 min (30 training slides and 19 interspersed Sesame
Street character slides).

There were 12 test trials each lasting 8 seconds. Each
test trial presented one word, repeated four times with
two objects – the target and a distracter – in view. The
distracter was drawn from the training set. Each of the
six words was tested twice. The distracter for each trial
was randomly determined such that each object occurred
twice as a distracter over the 12 test trials. This duration
and structure of training and test trials was the same as
in Smith and Yu (2008). However, the manner of pre-
sentation differs. Whereas Smith and Yu (2008) used a
large (47 by 60 in) screen and measured total looking
time, here we attempted to replicate these results using a
computer screen presentation and measure moment-
to-moment eye gaze using an eye tracker.

Apparatus

The learners’ eye gaze was measured by a Tobii 1750 eye
tracker with an infant add-on (http://www.tobii.se). The
principle of this corneal reflection tracking technique is
that an infrared light source is directed at the eye and the
reflection of the light on the cornea relative to the center
of the pupil is measured and used to estimate where the
gaze is fixated. The eye-tracking system recorded gaze
data at 50 Hz (accuracy = 0.5�, and spatial resolu-
tion = 0.25�) as a learner watched an integrated 17-inch
monitor with a resolution of 1280 · 1024 pixels.

Procedure

Infants sat on a parent’s lap 60 cm from the 17-inch
computer monitor used to present the stimuli. Before
the experiment, a calibration procedure was carried out.
In preparation for the calibration, the experimenter
adjusted the eye tracker to make sure that the reflections
of both eyes were centered in the eye-tracking camera’s

field of view. We used a procedure including nine cali-
bration points. The total duration of the calibration
procedure was about 3 minutes before the training trials
started. Parents were instructed to close their eyes during
the whole procedure and not to interact with the child
during the experiment.

Data

The eye tracker outputs (x,y) coordinates on the com-
puter display of the visual presentation at the sampling
rate of 50 Hz. There are in total 120 sec (4 sec ⁄ per
trial · 30 trials) during training and 96 sec (8 sec ⁄ per
trial · 12 trials) during testing. Therefore, there are 6000
data points in training and 4800 data points in testing, if
the eye tracker works perfectly. In practice, the tracking
system occasionally failed to detect the subject’s eye gaze
for two potential reasons: either because participants
looked away and their head and gaze moved outside of
the tracking plane, or the eye tracker could not correctly
compute the subject’s eye movements for some other
reasons. For the 18 infants with good tracking results, the
average tracking success is 79% in training and 69% in
testing.1 Thus, on average, we collected 4740 data points
in training and 3321 data points in testing per subject,
which were used in the following data analysis and
modeling.

Behavioral results in testing

Infants were presented with 30 training trials (two words
and two objects per trial) and then 12 test trials in which
one target word was played and two objects (the correct
referent and the distracter) were displayed. Infants’
preferential looking on such test trials is commonly used
as a measure of language comprehension (Hirsh-Pasek &
Golinkoff, 1996; Schafer & Plunkett, 1998; Golinkoff,
Hirsh-Pasek & Hollich, 1999; Halberda, 2003; Waxman
& Lidz, 2006) in that infants systematically look at the
portion of the display that corresponds to what they are
hearing, and this was the behavioral measure of learning
used by Smith and Yu (2008). Accordingly, the first
question we addressed was whether this study replicated
the previous result: did infants during the test trials look
longer at the correct referent for the heard word than the
distracter? In order to directly compare our eye-tracking
data with human coding data reported in the prior study
(Smith & Yu, 2008), we processed eye movement data by
simply splitting the screen into left and right sides, and

1 In our experiment, we used a digital camera pointing to the face of the
infant in the whole session and did manual coding of video clips from
three participants as a reliability analysis. The results show that the lost
data were mostly caused by infants looking away from the screen (85%)
but also occasionally by the eye tracker’s error in which case the infant
was attending to the screen but the eye tracker failed to generate gaze
data.
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then converting (x,y) coordinates from the Tobii eye
tracker into left ⁄ right coding. We found that infants
looked at each of the 8-second test trials for an average of
5.92 seconds. More importantly, they showed a longer
looking time to the targets (M = 3.25, SD = 0.49) than
distracters (M = 2.67, SD = 0.38; t(17) = 5.26, p < .01).
Further, we compared their looking time trial by trial for
each of six words. A word is counted as learned if infants
looked more on the target than the distracter. Based on
this measure, on average, four of the six words are
learned by infants, indicted by longer looking time to
targets. Among 18 infants, the four best learners acquired
five of the six words, six infants acquired four words, five
of them acquired three words, one acquired two words,
and two of them one word.2 Thus, this study replicates
the earlier finding that very young word learners can
learn word–referent pairings from individually ambigu-
ous learning experiences by combining the information
across those experiences. However, they also show that
there are individual differences; whereas most infants
appear to learn more than half of the words, some appear
to learn very few if any.

The main purpose of this study is to use eye movement
data to reveal new insights about the underlying learning
processes and, more specifically, to examine the relation
between the selectivity of looking on the training trials
and learning on the test trials. To this end, we first report
a set of data analyses on eye movement data, and then
introduce a simple associative model that makes minimal
processing assumptions, takes the micro-structure of the
eye-tracking data during training as input and predicts
individual performance on the test trials.

Eye movement data processing and analysis

Under the assumption that learning requires attending to
the object as a potential referent, the goal was to measure
object fixations and not merely the side of the screen to
which the infant was looking. Accordingly, we developed
a simple region-based fixation finding method. While
looking at an object, infants may switch their gaze from
one part of the object to another part, yet still be
attending to the same object and linking that object to
the heard word. Thus, we defined two rectangle regions-
of-interest (ROIs) that cover the areas of two visual
objects displayed on screen. Each ROI covers the area
occupied by one of two visual objects with a 10-pixel
margin along four directions. We then grouped raw eye
position data (x and y coordinates) that fell within the
same ROI as a single fixation. This process converts
continuous gaze data into three categories, namely, left
object, right object, or somewhere else. One potential
problem with this thresholding-based approach is that it
cannot handle data points close to the boundaries of
ROIs. For example, a single data point within a segment

of a continual gaze data stream that is just out of the
predefined ROI would split the whole segment into two
fixations instead of maintaining one big fixation. In
order to generate more reasonable results and remove
artificial effects from the thresholding method, two
additional data processing steps were applied to smooth
fixation data. First, we merged two consecutive fixations
sharing the same target object into one big fixation if the
gap between these two was small enough (< 60 ms or 3
data points). This smoothing step was based on the
assumption that a short period of time out of an ROI is
likely to be caused by artificial effects of the threshold-
ing-based method because a participant is less likely to
switch their visual attention to the background (e.g. the
middle of the screen with nothing displayed, etc.) and
immediately switch back to the target object in such a
short period of time. The second step was to remove
those short fixations that lasted less than 60 ms (3 data
points). Again, we suspected that those fixations were
likely caused either by accidental eye-tracking errors or
by the thresholding-based fixation finding method. The
final result of this thresholding and smoothing is an
event stream with each fixation entry consisting of three
elements (t1, t2, target) representing the onset of a fixa-
tion, the offset of the fixation, and the target object
fixated upon, respectively. Figure 1 shows the results of
eye fixation data in which each color represents one of
six visual objects that participants attended trial by trial.

The next goal in the analyses was to discover the
nature of looking patterns during training, and particu-
larly those that might lead to more successful learning.
As noted in the previous section, looking times to targets
and distracters at test clearly suggested that some infants
learned relatively many word–referent correspondences
and others learned very few if any. Accordingly, we
grouped participants into strong or weak learners based
on their (overall) preferential looking results in testing.
We then extracted and compared the eye movement
patterns characteristic of these groups during the learn-
ing phase. The grouping rule was straightforward and
meant an approximate division by learning. To group the
subjects, we used the overall accumulated looking time
on targets versus on distracters to group participants.
Specifically, participants who spent absolutely more time
on target objects than distracters during testing were
counted as a stronger learners: 12 out of 18 were cate-
gorized in the strong learner group and the other six were
in the weak learner group.

Note that this grouping is one of several possible ways
to distinguish strong and weak learning in this task. An
alternative way to identify strong learners is to count the
number of learned words based on individual learning
trials. We decided to use the overall looking metric since
the following analyses focus on general dynamic gaze
patterns over the course of training but not those pat-
terns at the individual word level. However, the grouping
results from individual words are nearly identical to
those based on accumulated looking patterns, suggesting

2 This result is also graphically shown in Figure 6 below with modeling
results.

Statistical word learning 169

� 2010 Blackwell Publishing Ltd.



that slightly different grouping schemes would not
change the results.

The empirical question is this: What looking patterns
signal better learning? The average looking time during
training for the strong and weak learners does not differ
significantly (M = 2.96 s for the strong and M = 3.07 s
for the weak for these 4-sec training trials). Thus, both
stronger and weaker learners look at the training slides.
We next calculated the average number of attention
switches (between left and right objects) and the average
length of the longest fixations within every training trial.
The results show that weak learners generate more fix-
ations per trial (M = 3.82) compared with strong learn-
ers (M = 2.75, t(58) = 3.65, p < .001) who generated
longer eye fixations on attended objects (M = 1.69) than
weak learners (M = 1.21; t(58) = 2.52, p < .01). Thus,
the finer-grained nature of looking patterns between the
two groups differs in that strong learners have more
stable eye movement patterns of sustained attention
characterized by fewer but longer fixations. In this
regard, these results differ from the findings from infant
visual recognition memory (Rose, Feldman & Jankowski,
2004) showing that shorter looks and more shifts
(interpreted as faster processing) lead to better recogni-
tion memory. Remembering the objects one has seen and
binding words to objects (and remembering that binding)
are profoundly different tasks, and thus the discrepancy
may indicate that infants require more sustained atten-
tion to cognitively register word–object associations.

To this point in the analyses, the measures lump
looking over the whole set of training trials together.
Thus, they cannot tell us whether the differences between
infants who show stronger learning at test and those who
show weaker learning at test are there from the start (as
perhaps intrinsic individual differences). Alternatively,
the differences may emerge over the course of the train-
ing events. Figure 2 shows that these differences indeed
emerge over training. Figure 2(a) shows the average
number of eye fixations over 30 individual training trials.
Both infants who show strong learning at test and those
who show weak learning at test have similar eye move-
ment patterns at the beginning, but roughly around 3–5

trials into the experiment, their looking patterns begin to
diverge. Weak learners generated more and shorter fix-
ations while strong learners maintained more stable
attention switches through the whole training. At the end
of training, both strong and weak learners had similar
overall attention switches again.

The number of attention switches is just one aspect of
the dynamics of eye movements that might be relevant to
learning. With the same number of attention switches
(e.g. at the end of training), strong and weak learners can
generate different looking durations. For example, one
group might have more or less uniform looking dura-
tions. The other group might have a more uneven dis-

20.000 30.000

time (sec)

40.000 50.000 60.000 70.000 80.000 90.000

Figure 1 Eye movement data trial by trial over the course of training. Each row shows an eye fixation stream collected from one
participant. There are in total six different colors used in those streams, each of which corresponds to one of six visual objects. From
this example, we can see that eye movements are very dynamic and spontaneous with different numbers of fixations, different
durations for those fixations and different timings when they start and end. There are clearly individual differences across young
infants.

(a)

(b)

Figure 2 The dynamics of eye fixations trial by trial: (a) we
measured the average number of eye fixations per trial and
showed the dynamic changes of this measure across trials;
(b) we measured the average length of the longest fixation
over training trials. From both measures, there are significant
differences between strong and weak learners. Shaded areas
(trials) are statistically significant (p < .005) based on pairwise
t-test.
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tribution of looking durations containing one or two
longer fixations with several shorter attention switches.
To capture the dynamics of looking durations, Fig-
ure 2(b) shows the average lengths of the longest fixa-
tions over training trials. A longer fixation may indicate
more stable attention and therefore better learning. In-
fants who showed stronger learning at test consistently
generated longer fixations trial by trial while the infants
who showed weaker learning at test always produced
shorter fixations especially at the end of training. The
overall results from Figure 2(a) and (b) suggest that
strong and weak learners show quite different eye pat-
terns from the beginning to the end of learning. On the
early learning trials, weak learners tend to generate more
and shorter fixations. However, the most significant
differences are in the middle of learning; weak learners
generate more attention switches than strong learners.
Moreover, given the approximate same number of
attention switches (given that there are no major differ-
ences in the longest looking duration), the other fixations
generated by strong learners are more stable than those
in weak learners. Finally, the end of training is clearly
characterized by longer fixations by the stronger learn-
ers. Importantly, the measures in Figure 2 do not take
into account where the infants are looking, but only the
overall timing and dynamics of eye movements. Thus,
even though some aspects of overall eye movement pat-
terns are similar at the end of training, there may be
differences in whether learners are looking at the correct
or incorrect target at the moment it is named.

To further quantify the dynamics of eye movement
patterns during training, we introduce a new metric
based on information entropy (Cover & Thomas, 2006).
Assume that a participant generated L fixations in the tth
learning trial (1 £ t £ 30) and each fixation fm lasted a
certain period of time T(fm), a sequence of eye fixations
generated by a participant within the learning trial can be
viewed as a probabilistic distribution after we normalized
each fixation time by the overall looking time within the
trial. The entropy of eye movements within the tth trial
can then be calculated as follows:

EðtÞ ¼ �
XL

m¼1

T ðfmÞP
T ðfmÞ

log
T ðfmÞP

T ðfmÞ

According to this measure, more eye fixations within a
trial increase the span of the distribution and hence cause
the increase of the entropy. For example, the entropy of a
learning trial with two eye fixations is very likely to be
lower than that of a learning trial with four fixations.
Moreover, the same number of fixations more evenly
distributed creates high entropy while an uneven distri-
bution with some longer and some shorter fixations
decreases the entropy of eye movements. If more rapid
attention switches within a learning trial and more even
looking times indicate a participant’s uncertainty about
word–referent pairings, then the entropy of eye move-
ments is a potential measure of the participant’s internal

learning state over the course of learning. Figure 3 shows
the results of the entropy measures from both strong and
weak learners. Again, we found overall similar entropy
results between the two groups at both the beginning and
the end of training but significant differences in the
middle of training.

Two implications follow from this result. First, weak
learners seem to be more uncertain about the pairings in
the middle of training. Second, even though the degrees
of uncertainty for the two groups are similar at the end of
training, we do not know, with respect to the present
measure, what might have been learned or not learned.
That is, the present metric does not contain information
as to whether the learner is looking at the correct or
incorrect target. Thus, both learners may converge to
some word–object pairings at the end; however, weak
learners may have lower degrees of uncertainty (just like
stronger learners) but on wrong pairings. To check this,
we next measured the entropy of eye movements based
on whether the participants looked at the correct referent
after hearing a word. To do so, we further decomposed
eye movements in each trial into two groups based on the
timings of two spoken words. More specifically, eye
movements that were generated between the 300 ms after
the onset of a spoken word and the onset of the other
word (or the end of the current trial) were grouped
together and labeled as eye movements driven by the
concurrent spoken word. We chose 300 ms based on the
approximation that it took participants at least 200 ms
to generate an eye fixation and they might be able to
recognize to-be-learned words after they heard the first
part of a word (100 ms).3 Since each word occurs 10
times in the 30 training trials, we averaged the looking
time entropy of each appearance of each word by
aggregating the results from individual words. Figure 4
shows significantly different patterns between strong

Figure 3 The dynamics of eye movement entropy in training
trials. The differences between strong and weak learners are
significant during the middle of the training. Shaded areas
(trials) are statistically significant (p < .005) based on pairwise
t-test.

3 Two other timing offsets (200 ms and 400 ms) were selected but this
parameter didn’t make any difference in our results.

Statistical word learning 171

� 2010 Blackwell Publishing Ltd.



learners and weak learners for each of the 10 presenta-
tions of the word.

As can be seen in Figures 3 and 4, by all these mea-
sures weaker learners show greater entropy in the middle
of the training trials. What might this dynamic pattern
mean? One possibility is that strong and weak learners
are alike at the beginning because they enter the task
with the same knowledge, not knowing any of the word–
referent pairs. All learners on the initial trials must
randomly sample some word–referent pairs by selectively
looking at one of the two objects when hearing one of the
words. Young children in both groups may start this
sampling process similarly and thus there are no differ-
ences in their eye movement patterns. Following this line
of reasoning, the diverging patterns of learning that then
follow this beginning could be the consequences of dif-
ferent learning in this initial similar phase that then sets
up the different looking patterns in the middle, leading to
more successful or less successful resolution of the sta-
tistical ambiguities inherent in the learning trials. With
this conjecture in mind, we built a simple associative
learning model and fit real-time looking data during
training to predict the outcome measures at test.

The model

The primary goal of this modeling effort is to link the
fine-grained analyses of looking behavior observed in the
experiment to learning as measured at test. Although the
underlying processes may be more complex, for this
linking goal we assume only that co-occurrences of
attended objects and heard words matter. Thus, for
example, the model does not include the selective atten-
tion component of the learning process, nor the processes
through which associative learning might train attention
(see Smith, 2000, for review of relevant evidence). In-
stead, selective attention is implicit in momentary gaze
data fed into the model. In brief, the model is purposely
conceptually simple so as to minimize assumptions and
thus to allow us to see the structure in the looking pat-

terns generated by the infants and, most critically, the link
between looking and learning outcome at test. By ass-
uming very little about the learning mechanism beyond
co-occurrence, we may be able to discern just how tightly
looking patterns are linked to learning outcome.

An associative learning mechanism strengthens the
link between a word and a referent if these two co-occur
regularly across multiple trials and weakens the link if the
word and the referent do not co-occur. In the experi-
ment, infants were exposed to six words and six pictures
in total. Therefore, a 6 by 6 association matrix as shown
in Figure 5(b) is used in modeling as a representation of
all the possible associations that a learner might track. In
such an association matrix, each cell corresponds to a
particular word–referent association. The diagonal cells
are the six correct pairings while non-diagonal cells
represent spurious correlations due to the ambiguity
inherent in the training trials. The model tracks associ-
ation probabilities, updating them trial by trial. The
model assumes that the learner makes a decision during
testing in the sense of looking at the object that has been
more strongly associated with the word in the learner’s
internal association matrix. Thus, the internal associa-
tion matrix of a successful learner should be one in which
the diagonal items were assigned with higher probabili-
ties than were non-diagonal cells. In brief, by this simple
model, the critical issue for learning is the specific asso-
ciations that are accumulated over trials. What, then, do
these internal association matrices look like?

To examine these possibilities, we build the association
matrix trial by trial as follows:

pijðtÞ ¼
t � 1

t
pijðt � 1Þ þ 1

t

kðtÞgijðtÞP
j kðtÞgijðtÞ

where t is the trial number, and pij(t) refers to the
association probability of the object i and the word j at
the tth trial. Thus, pij(t) corresponds to one cell in the
association matrix which is composed of two weighted
parts. The first part pij(t ) 1) reflects the accumulated
association probability so far until the (t ) 1)th trial that
is carried over to the current trial. The second part (with
two variables gij(t) and kðtÞ) updates the previous
association probability based on a learner’s eye move-
ments in the current trial. First, rapid shifts of visual
attention between possible objects after hearing a word
are taken as reflecting uncertainty (that is, the lack of one
stronger and several other weaker associations). In brief,
we expect that the learner is more likely to consistently
fixate on the corresponding referent to the degree that it
is strongly associated with the target word; this is, again,
the very basis of using preferential looking to measure
word knowledge. This principle is encoded by kðtÞ that
measures the overall degree of uncertainty in the tth
learning trial from individual learners’ perspectives. The
more uncertain the learner is, the less likely s ⁄ he reliably
registers word–referent associations. Second, the multi-
modal synchrony between eye movements and spoken

Figure 4 The dynamics of eye movement entropy based on
the temporal occurrences of to-be-learned words. Shaded areas
(trials) are statistically significant (p < .005) based on pairwise
t-test.
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words may indicate the strength of the registration of a
certain word–referent pairing, and the duration of such
synchronized behaviors may indicate how strong a word–
referent association is in the learner’s association matrix.
This observation is captured by gij(t) that measures the
possible association between a word i and an object j at
the current trial based on eye movements. In the
following, we explain exactly how to estimate kðtÞ and
gij(t).

We first computed eye fixations from raw eye move-
ment data and converted the continuous gaze data
stream into a set of eye fixations marked by the onset
and ending timestamps of each fixation using the same
data processing method described earlier. Next, we seg-
mented the whole set of eye fixations into individual
trials by aligning eye fixations with the timing of training
trials. Within each learning trial, there are multiple eye
fixations on the two objects on the computer screen that
occur as the two words are sequentially presented.
Assume that there are L fixations {f1, f2, f3, ..., fL} in the
tth learning trial. For a fixation fm, t(fm) is the object
that was fixated on, w(fm) is the spoken word that the

participant heard right before or during the fixation, and
T(fm) is the fixation time. As shown in Figure 5, all of the
eye fixations generated between the 300 ms after the
onset of a spoken word and the onset of the next spoken
word (or the end of the current trial) are assigned to be
associated with that spoken word.

Next, kðtÞ, as an indicator of the learner’s uncertainty
in the current trial, can be encoded as how frequently the
learner moves his eyes between those objects after
hearing a word in the tth trial. Therefore, we defined
kðtÞ ¼ 1

EðtÞ where E(t) is the same entropy measure of a
sequence of eye fixations within the trial as a metric to
characterize this factor. Thus, the more fixations learners
generate, the more uncertain their learning state is, and
therefore the less likely they successfully register word–
referent associations and gain more knowledge in asso-
ciative learning in the current trial.

Moreover, the second variable, gij(t), measures the
possible association between a word and an object, which
is composed of two parts. The first part estimates the
probability of associating an object to a particular word
based on the amount of looking time at that object

(a)

(b)

Learning trails and eye fixations

Attention getter slide

Visual
stimuli

Spoken
words

bosa

Eye
fixations

Left object

Non-object region

Right object

kaki colat
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regli

colat

gasser

regli

fn

V(fn)

W(fn)

W(fm)

Building association matrix based on eye fixations

V(fm)
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Figure 5 (a) We measure where the learner is fixating on after hearing a spoken word. For example, after hearing the word ‘bosa’,
there are four eye fixations on both left and right objects. Those fixations (and corresponding fixed objects) are associated with the
word ‘bosa’. The strength of the association between an object (left or right) and the word ‘bosa’ is determined by the overall duration
of fixations on that particular object. (b) A 6 · 6 association matrix built based on the synchrony between a subject’s eye movements
and spoken words during training. Each cell represents the association probability of a word–object pair. The diagonal items are
correct associations and the non-diagonal items are spurious correlations. Dark means low probabilities and white means high
probabilities.
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(compared with other objects) after hearing that word:
Given multiple candidate objects, how likely is a heard
word associated with each object – the competition
between candidate objects for a given word. The second
part estimates the probability based on comparing the
looking time to the same object across several spoken
words: Given multiple candidate words, how likely is an
object associated with each word – the competition
between candidate words for a given object. Formally,
gij(t) can be represented as follows:

gijðtÞ ¼
PL

m¼1 d i; tðfmÞð ÞT ðfmÞd j;wðfmÞð Þ
PL

m¼1 d i; tðfmÞð ÞT ðfmÞ

þ
PL

m¼1 d i; tðfmÞð ÞT ðfmÞd j;wðfmÞð Þ
PL

m¼1 d j;wðfmÞð ÞT ðfmÞ

where d is the Kronecker delta function, equal to one
when both of its arguments are the same, and equal to
zero otherwise. Thus, the numerator of the two parts is
the same, measuring the accumulated number of fixa-
tions within a trial (T(fm), etc.) based on the synchrony
between a certain attended object i (v(fm) == i) and a
certain heard word j (w(fm) == j). The denominator in
each part just normalizes the above numerator either
across all the words or across all the objects, respectively.
Thus, a learner’s visual attention in statistical learning is
directly encoded in the association matrix that the model
built. For example, a longer and more stable fixation on a
visual object after hearing a word increases gij(t) and
therefore strengthens the association probability pij(t). To
follow this example, after hearing the second word, the
less amount of time that a learner attends to the same
object, the less likely the learner considers that object as
a candidate referent of the second word, and therefore
the more likely the learner treats the object as the
candidate referent of the first word instead. This obser-
vation is implemented in the calculation of gij(t) by
decreasing the denominator

PL
m¼1 d i; tðfmÞð ÞT ðfmÞ which

has the effect of increasing gij(t) and pij(t). Since
individual infants generated different eye fixation
sequences, the model builds different association matri-
ces for different individuals.

In summary, our associative model attempts to build a
word–object association matrix based on two variables
gij(t) and kðtÞ wherein gij(t) captures the synchrony
between visually attended objects and concurrently
heard words, and kðtÞ assigns registration weights to
gij(t) based on the dynamic characteristics of eye
movements (for instance, the degree of uncertainty) in
the present trial. Indeed, given the entropy differences
over trials between strong and weak learners shown in
Figures 3 and 4, we can infer that even if the values of
gij(t) are the same with two learners, a better set of
registration weights captured by kðtÞ from the learner
with more stable eye fixations will make this learner
build a better association matrix.

Results

Figure 5(b) shows an example of an association matrix
built based on a learner’s eye movements. In this exam-
ple, some strong associations are correct (e.g. the word
manu with the object manu) and others are not (e.g. the
word colat with the object regli). Two measurements
evaluated whether the associative model based on eye
movements predicts individual differences in learning.
First, there is a strong correlation (r = 0.71; p < .005)
between the number of learned words according to the
model for each infant and the number of words actually
learned by that infant (as measured by absolutely greater
looking times to the referent versus the distracters for
that word). Second, we also found that the proportion of
diagonal cells (the strength of correct word–referent
associations) in an association matrix was strongly cor-
related (r = 0.65; p < .005) with the proportion of
looking time (the degree of the preference to look) to the
correct referents at test. The scatter plot for this corre-
lation is shown in Figure 6 along with the model’s
accumulated matrices at the end of training for four
individual participants. These four association matrices
are quite different from each other and are ordered top
to bottom by the strength of correct associations on
diagonal cells. More specifically, most diagonal items
(correct word–referent associations) in the top associa-
tion matrix are highlighted while the association proba-
bilities between words and referents are more distributed
in the bottom matrix. Critically, these very different
matrices are built based on the same associative learning
mechanism and the same start, namely, random selection
of pairs, but they accumulate data as a function of the
specific eye movement patterns of the individuals. The
fact that these patterns predict learning tells us that the
fine-grained looking dynamics during training are rele-
vant to the outcome. The fact that weaker and stronger
learners can be modeled with the very same simple model
that takes only looking patterns as input suggests that
the individual differences observed in learning may re-
flect – not differences in learning strategy or fundamental
learning mechanisms – but differences in the moment-to-
moment selection of information in the learning task. We
will discuss this second idea more fully in the General
Discussion.

The model aggregates statistical information across all
learning trials and from this information can predict
performance at test which follows the completion of
training. If differences between the two groups of
learners emerge – and are not there at the start – then the
model should not be able to predict learning even using
the same mechanism if it were given incomplete training
data. To examine this issue, the 30 training trials were
divided in half, and we used each half to separately build
the association matrices for each participant. Then we
again correlated the number of learned words predicted
by the model with the number of learned words (as
measured by absolutely greater looking times at the
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target than distracters at test) for each individual learner.
A weak and unreliable correlation was found for the first
half (r = 0.31, p = .22) and a very strong correlation was
found for the second half (r = 0.78, p < .005).

General discussion

Statistical learning appears to be a pervasive component
of human learning about language and to be powerfully
evident even in simplified and very brief experimental
contexts. The still open question is the nature of the
mechanisms that underlie this learning. The present
results reveal two ingredients relevant to a mechanistic
account of learning word–referent mappings across
individually ambiguous trials: attention and associative
learning. A simple model assuming the most elemental
form of associative learning can explain both the group
data and also individual differences in infant learning
from simply knowing the potential referents to which
infants – moment by moment – attend. This tells us that
the key to understanding statistical learning in this task
will be understanding attention and the trial-by-trial
selection of information.

The eye-tracking data and the model indicate that
learners do not passively store all the word–object
co-occurrences but only some of them; learning thus
depends on looking at the right referent at the right
moment in time (when the referring word is also pre-
sented). Infants who showed strong learning at the end of
the experiment exhibited a pattern of stable looking
across learning trials; and over trials, these infants began
to look more often to the right referents for the heard
word, building robust associations for correct pairs and
fewer spurious correlations. Weak learners start learning
with looking patterns like those of the strong learners,

but their looking becomes more variable within a trial,
short looks and many switches back and forth, and thus,
by the simple associative model, they build generally
weaker associations and these weaker associations are
distributed over many more incorrect pairs. In the model,
individual differences emerge solely through the looking
patterns; the same associative learning mechanism pro-
duces quite different results, being highly dependent on
the dynamics of attention over the course of training.
The simple model and the data themselves are just a first
step toward understanding real-time mechanisms that
lead to statistical cross-situational learning; nevertheless,
they raise new insights and intriguing questions for
future work; these are discussed next.

Statistical associative learning

The present results support the argument that associative
learning mechanisms will be part of the explanation of
statistical learning; they are sufficient (when coupled
with selective attention) to predict individual differences.
The power of this success quite frankly lies in the eye
movement data which can be directly mapped to the
hypothesized strength of association in a probabilistic
associative framework. This simple model is in contrast
to hypothesis-testing accounts which explicitly formulate
and evaluate hypothesized word–referent pairs, elimi-
nating incorrect hypotheses and maintaining hypotheses
that are consistent with the training data observed so far.

The simulations here did not include an explicit
hypothesis-testing model coupled to the eye movement
data. Given the dynamic and spontaneous eye movement
generated by the infants as shown in Figure 1, it is hard
to conceptualize them in terms of a hypothesis-testing
model in which young learners strengthen or weaken
hypotheses. To take advantage of the more detailed eye
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Figure 6 The comparison of predicted
results from the associative model and
the actual results of human learners indicates
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movement behavioral data, a hypothesis-testing mecha-
nism, at minimum, needs to incorporate two kinds of
basic information that are in the eye movement data and
were shown here to be relevant to learning. The first is
the pattern of looks within a trial and the shifting of
looks back and forth between two candidate objects after
hearing a word, a behavior that characterized both strong
and weak learners throughout the training session. While
it is easy to link this dynamic information selection with
the dynamic strengthening of associations, it is not at all
clear how to mechanistically link these behaviors to
changes in hypothesis strength. This is not to say that
this could not be done. However, showing that an asso-
ciative versus hypothesis-testing model is correct for
explaining this kind of learning is not the present goal
nor the main conclusion. The goal was to under-
stand learning at the dynamic micro-level of moment-
to-moment attention. And the main conclusion from the
present data is that any model which seeks to explain
learning at the level of real-time dynamics will have to
take moment-by-moment attentional processes seriously.
A second aspect of the eye movement data that was
found to be relevant to learning concerns the durations
of looks. Each eye movement has its own length and
these durations vary; these differences matter to suc-
cessful learning in the associative learning model. Again,
it is unclear how such information might be linked to
current hypothesis-testing models of cross-situational
learning (Siskind, 1996). For example, is a fixation a
sampling of a new hypothesis or should it be interpreted
as evaluating an existing one? If the latter, how to dis-
tinguish between accepting and rejecting an existing
hypothesis based on eye fixation patterns, and how do
long versus short fixations play out in sampling and
evaluating? There is no argument here that this is an
in-principle limitation; but looking when listening – both
numbers, timings and durations of eye fixations – mat-
ters straightforwardly in the infant’s learning in this task
and also in building the associations in an associationist
model.

The associationist approach taken here also contrasts
with the more common approach to statistical learning
which assumes sophisticated and powerful learning
algorithms operating on messy data and most often
assumes a form of inference making (Xu & Tenenbaum,
2007; Frank et al., 2009). Although hypothesis-testing
inference and associative learning may be formally trea-
ted as variants of the same learning framework (Yu,
Smith, Klein & Shiffrin, 2007), there are also funda-
mental differences. An associative learning mechanism
with real-time attention treats the learning process as a
dynamical system and focuses on how the learning sys-
tem may actively select some potential pairs over others
based on real-time feedback and the current learning
states. Real-time attention thus removes a significant
amount of uncertainty from the learner’s internal data
set (and could potentially even yield better and sparser
internal matrices than the real-world data). In contrast,

hypothesis-testing inferences often assume that the
learners receive unprocessed ambiguous data but rely on
the powerful learning machinery to infer meaningful
knowledge from that data. The first approach – being
tied to real-time behaviors on the part of the learner –
may offer a deeper understanding of how learning pro-
gresses moment by moment from sets of experiences and
could be conceptualized as the implementational real-
time model of hypothesis testing. Understanding
processes at this more micro-level might also give new
insights into how and why the social scaffolding of adult
partners is so effective in promoting word–referent
learning. A more systematic simulation study and more
detailed discussion of associative learning and hypothesis
testing in the context of adult cross-situational learning
can be found in Yu et al. (2007) and Yu and Smith
(submitted).

Learning co-occurring cross-situational statistics

Although the results show the promise of analyzing
micro-level behaviors during the course of learning, we
note that the model did not reach the level of predicting
which individual words were learned by the specific
infants. There is one simple and one deeper reason for
this limitation. First, infants generate more than 100 eye
movements with various durations during the course
of 4 minutes’ training. Some are likely generated by
randomness and some are more systematic; some are
directly learning related and some may be caused by
other perceptual and cognitive factors that may not be
directly relevant to the learning task or, if they are, we do
not yet know it. The current work represents a first effort
and was motivated by psycholinguistic studies on adult
spoken language processing. But there are significant
challenges in applying this approach to infants. Infant
eye movements (just like other behaviors that they gen-
erate at the early stage) are more spontaneous and more
random compared with adult eye movements. They may
also tie to knowledge and learning in different ways than
do seemingly comparable behaviors in adults. Moreover,
the only data we have from these infants is looking
patterns; there is no independent measure of what they
know trial by trial to help discover the meaning of these
looking patterns. In brief, the simple answer to why we
cannot predict the individual words learned by individual
learners is that this is a first step, and there is much that
we do not know. As we get to know more about the
looking behavior and how it both drives and reflects
learning, we may be able to move to that level of precision.

However, there may be a deeper reason for the limi-
tation that has to do with the very nature of cross-situ-
ational learning. In this paradigm, a learner perceives
multiple words and multiple objects trial by trial. As
indicated by the association matrix shown in Figure 5(b),
each word ⁄ object co-occurs with all of the other words ⁄
objects in the whole training. Therefore, as learning
proceeds, knowing one word in a trial may simplify the
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learning task by reducing the degree of ambiguity in the
current trial. Thus, knowing more words may facilitate
and boost the whole learning process. Consequently, the
mechanisms of learning individual words may differ
depending on both the current learning context and the
learner’s internal learning state. Hence, even for all the
successfully learned words, eye movement patterns on
those words may be different depending on both whether
a word was learned first or later and whether other
co-occurring words were already learned or not. From
this perspective, cross-situational learning (and attention
in these tasks) may fundamentally not be explained as
the learning of individual word–referent pairs but instead
may only be understood in terms of learning a system of
associations (Yu, 2008). In such a system, a single word–
referent pairing is correlated with all the other pairings
that share the same word and all the other pairings that
share the same referent. More specifically, given a word–
referent pair in the association matrix, this association is
related to all of the other cells in the matrix sharing the
same row and all of the others sharing the same column.
Those associations are in turn correlated with more
word–referent pairs – and the whole system as the whole
association matrix. Indeed, Yu (2008) proposed and
developed a computational model to account for
so-called latent knowledge in statistical learning in which
the model shows lexical knowledge accumulated over
time as latent knowledge of the whole lexical system, and
that partial knowledge can be recruited in subsequent
word learning. Thus, in cross-situational statistical
learning, although we have to test the learning outcome
as individual words, a more comprehensive view of cross-
situational learning may need to be based on learning the
whole system of co-occurring associations instead of
learning individual ones. If this is the case, then analyz-
ing eye movement data should start with the idea of
global eye movement patterns as a product of a system of
associations. In future studies, we intend to explore these
ideas through both experimental studies and computa-
tional modeling.

Better looking and better learning

Does better looking lead to better learning or does better
learning lead to better looking? Studies of infant learning
present learning trials first and then testing trials, using
looking time to measure what has been learned. But
these are not two distinct kinds of trials from the infant’s
point of view. Thus, if what has been learned guides
looking at test (and does so robustly so that researchers
can use it as the dependent measure), then surely what is
being learned may guide looking during the training
trials. At the beginning of training, infants may ran-
domly select visual objects after hearing a word, with no
word–object associations influencing that selection. But
at some point in training, after exposure to some suffi-
cient number of co-occurrences, the statistical regularities
in those occurrences seem likely to influence looking and

visual selection. Eye movements, particularly those in the
later part of training, may reflect what learners already
know.

However, those eye movements driven by a learned
association also lead to the strengthening of already
(maybe partially) learned associations. Thus, a learner
may register word–referent associations by selectively
attending to target objects trial by trial, and the syn-
chrony between heard words and visually attended
objects will allow the infants to build and enforce cor-
responding word–object associations. Indeed, a recent
study on the preference to attach novel labels to novel
objects found that infants couldn’t use Mutual Exclu-
sivity (ME) on the first encounter of a novel label with
one familiar object and one novel object but there was a
carry-over effect to the next time the label was presented
and thus the ME effect emerged over a more extended
period containing multiple learning episodes (Mather
& Plunkett, 2009). If we further consider cross-situa-
tional learning as learning a system of associations
between words and referents, then learning itself may
drive attention to as-yet-unlearned referents from as-yet-
learned ones in the context of hearing an as-yet-un-
learned name – a form of mutual exclusivity (Golinkoff,
Hirsh-Pasek, Bailey & Wenger, 1992).

Based on this observation, the idea of any clear
boundary between learning and test becomes even less
likely. There is no separation between learning and
looking: infants’ looking creates learning and the looking
itself is influenced by learning. The present simple model,
albeit helpful in revealing how learning depends on the
looking patterns, does not incorporate this real-time
dynamic loop between looking and the internal learning
state. For instance, longer looking durations at the end of
training shown in Figure 2(b) can be the outcome of
learning or the cause of learning. Similarly, more atten-
tion switches in the middle of training from weak
learners shown in Figure 2(a) can be the consequence of
unsuccessful attempts to register word–object associa-
tions or they can be the cause of unsuccessful learning. A
more detailed data mining will need to not only discover
different kinds of patterns over time but also link them
together to decipher the consequential effects of those
patterns. Further, a more correct future model will need
to explain both information selection (as it dynamically
happens in real-time learning) and the learning mecha-
nism.

Sources of individual differences

Weak and poor learners show different looking patterns
over the course of training. One plausible account is that
both strong and weak learners start by randomly sam-
pling possible word–referent pairs but the infants who
will become strong learners just happened to sample the
right pairs at the start and those who will become the
poor learners do so because they just got off to a bad
start, sampling and storing wrong pairs. Thereafter,
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strong learners consistently strengthen those correct
associations while weak learners cannot (as those wrong
associations will not occur with much frequency). The
resulting uncertainty may be what results in briefer and
more variable fixations that emerge in the middle portion
of training.

Another possible reason for the observed individual
differences is that there may be some intrinsic reasons
causing weak learners to fail to consistently stabilize
their attention. Perhaps they pick up just as many right
and wrong early associations as the good learners but
this early partial learning does not organize attention as
well and thus they fail to strengthen these associations.
A next step to answering these issues is to bring infants in
for multiple training and testing sessions (using different
sets of words and referents) to determine whether these
individual differences are reliable across testing. Are the
same infants good and poor learners on different days or
does successful learning self-organize in the session from
what must initially be randomly selected word–referent
pairs? Further, individual differences on both whether
they learn in training and whether they demonstrate
learning outcome in test depend on how reliable their
looking behaviors are related to the statistical learning
task. Therefore, another next step for deeper data
analyses of individual differences at the micro-level is
to record, code and analyze the infant’s engage-
ment ⁄ attention level in both training and testing sessions
as in this study (and many other infant studies) to better
use their looking behaviors to infer their learning
mechanisms.

Conclusion

As stated in Gleitman et al. (2005), the problem with
word learning is not the poverty of the stimulus but
ambiguity in the massive amounts of information avail-
able. Thus learners need to select some information – the
right information – for learning. At the macro-level, we
know a great deal about the forces that enable young
learners to select the right information for mapping
words to referents and we know that these include social,
linguistic, and conceptual biases. But we know very little
about how these play out in real time. The present study
and the results did not consider these higher level con-
straints on children’s word–referent learning but we
believe that they are deeply relevant to them nonetheless.
The present results tell us that word–referent learning (at
least in this one task with highly ambiguous learning
trials) is, at the micro-level of analysis, tightly tied to real-
time information selection. This suggests that we might
look for a deeper understanding of word learning in
general – and social, linguistic, and conceptual biases –
through fine-grained analyses of moment-to-moment
attention (see also Halberda, 2003; Swingley & Aslin,
2007).

The more specific contribution concerns cross-stitua-
tional learning of words and referents. The present work
is built upon the recent work in statistical word learning
(Smith & Yu, 2008). The present findings go beyond
demonstrating that infants can do this form of learning
by revealing deep links between the dynamics of atten-
tion and statistical learning. The work was motivated by
and took advantage of three recent advances in cognitive
science and psychology: (1) developmental psychology:
using eye-tracking techniques to measure moment-
by-moment eye movement data from infants (Aslin &
McMurray, 2004); (2) psycholinguistics: measuring the
synchrony between visual attention and speech
(Tanenhaus et al., 1995); and (3) data mining: analyzing
fine-grained temporal behavioral data using computa-
tional techniques (Yu, Ballard & Aslin, 2005). The work
also represents the first attempts to use momentary eye
movement data as input to a computational model so as
to understand word learning. The present results from
this endeavor yield two promising directions for the
future study of cross-situational learning. First, they
show that a simple associative learning mechanism
(without high-level statistical computations) can support
this kind of learning if the learner selectively registers the
right statistical information at every moment. Second,
the results show how individual differences in learning
may arise from different learners attending to different
statistical information but based on the same associative
learning mechanism. The results also show how eye
movements can be used as a window to infer the statis-
tical learner’s internal state. This finding in particular
allows us to ask in future work how selective attention
works in real-time learning.

Acknowledgements

We thank Juliette McNamara, Amara Stuehling, and
Char Wozniak for collection of the data. We are grateful
for insightful comments from the action editor Usha
Goswami and four anonymous reviewers. We would like
to acknowledge discussions with Daniel Yurovsky and
Krystal Klein. This research was supported by National
Institutes of Health R01 HD056029 and National Sci-
ence Foundation Grant BCS0544995.

References

Aslin, R., & McMurray, B. (2004). Automated corneal-reflec-
tion eye tracking in infancy: methodological developments
and applications to cognition. Infancy, 6 (2), 155–163.

Booth, A., & Waxman, S. (2002). Word learning is ‘smart’:
evidence that conceptual information affects preschoolers’
extension of novel words. Cognition, 84 (1), 11–22.

Chater, N., & Manning, C. (2006). Probabilistic models of
language processing and acquisition. Trends in Cognitive
Sciences, 10 (7), 335–344.

178 Chen Yu and Linda B. Smith

� 2010 Blackwell Publishing Ltd.



Chomsky, N. (1959). Verbal behavior. Language, 35 (1), 26–58.
Christiansen, M., Allen, J., & Seidenberg, M. (1998). Learning

to segment speech using multiple cues: a connectionist
model. Language and Cognitive Processes, 13 (2 ⁄ 3), 221–268.

Cover, T., & Thomas, J. (2006). Elements of information theory.
New York: Wiley-Interscience.

Elman, J. (1993). Learning and development in neural net-
works: the importance of starting small. Cognition, 48 (1),
71–99.

Fisher, C., Hall, D., Rakowitz, S., & Gleitman, L. (1994).

When it is better to receive than to give: syntactic and con-
ceptual constraints on vocabulary growth. Lingua, 92, 333–
375.

Frank, M., Goodman, N., & Tenenbaum, J. (2009). Using
speakers’ referential intentions to model early cross-situa-
tional word learning. Psychological Science, 20 (5), 578–585.

Gelman, S., & Taylor, M. (1984). How two-year-old children
interpret proper and common names for unfamiliar objects.
Child Development, 55, 1535–1540.

Gleitman, L. (1990). The structural sources of verb meanings.
Language Acquisition, 1 (1), 3–55.

Gleitman, L., Cassidy, K., Nappa, R., Papafragou, A., &
Trueswell, J. (2005). Hard words. Language Learning and
Development, 1 (1), 23–64.

Golinkoff, R. (1994). Early object labels: the case for a devel-
opmental lexical principles framework. Journal of Child
Language, 21 (1), 125–155.

Golinkoff, R., Hirsh-Pasek, K., Bailey, L., & Wenger, N.
(1992). Children and adults use lexical principles to learn new
nouns. Developmental Psychology, 28 (1), 99–108.

Golinkoff, R., Hirsh-Pasek, K., & Hollich, G. (1999). Emerging
cues for early word learning. In B. MacWhinney (Ed.), The
emergence of language (pp. 305–330). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Golinkoff, R., Jacquet, R., Hirsh-Pasek, K., & Nandakumar,
R. (1996). Lexical principles may underlie the learning of
verbs. Child Development, 67 (6), 3101–3119.

Griffin, Z. (2004). Why look? Reasons for eye movements re-
lated to language production. In J.M. Henderson & F.

Ferreira (Eds.), The interface of language, vision, and action:
Eye movements and the visual world (pp. 213–247). New York:
Psychology Press.

Griffin, Z., & Bock, K. (1998). Constraint, word frequency, and
the relationship between lexical processing levels in spoken
word production. Journal of Memory and Language, 38 (3),
313–338.

Halberda, J. (2003). The development of a word-learning
strategy. Cognition, 87 (1), 23–34.

Halberda, J. (2006). Is this a dax which I see before me? Use of
the logical argument disjunctive syllogism supports word-
learning in children and adults. Cognitive Psychology, 53 (4),
310–344.

Hirsh-Pasek, K., & Golinkoff, R. (1996). The intermodal
preferential looking paradigm: a window onto emerging
language comprehension. In D. McDaniel & C. McKee
(Eds.), Methods for assessing children’s syntax (pp. 105–124).
Cambridge, MA: MIT Press.

Hollich, G., Hirsh-Pasek, K., Golinkoff, R., Brand, R.,
Brown, E., Chung, H., Hennon, E., & Rocroi, C. (2000).

Breaking the language barrier: an emergentist coalition
model for the origins of word learning. Monographs of the
Society for Research in Child Development, 65 (3, Serial
No. 262).

Huettig, F., & Altmann, G. (2005). Word meaning and the
control of eye fixation: semantic competitor effects and the
visual world paradigm. Cognition, 96 (1), 23–32.

Imai, M., & Gentner, D. (1997). A cross-linguistic study of
early word meaning: universal ontology and linguistic influ-
ence. Cognition, 62 (2), 169–200.

Johnson, S., Amso, D., & Slemmer, J. (2003). Development of
object concepts in infancy: evidence for early learning in an
eye-tracking paradigm. Proceedings of the National Academy
of Sciences, 100 (18), 10568–10573.

Keil, F. (1992). Concepts, kinds, and cognitive development.
Cambridge, MA: MIT Press.

Klibanoff, R., & Waxman, S. (2000). Basic level object cate-
gories support the acquisition of novel adjectives: evidence
from preschool-aged children. Child Development, 71 (3),
649–659.

Knoeferle, P., & Crocker, M. (2006). The coordinated interplay
of scene, utterance, and world knowledge: evidence from eye
tracking. Cognitive Science: A Multidisciplinary Journal, 30
(3), 481–529.

Landau, B., Smith, L., & Jones, S. (1988). The importance of
shape in early lexical learning. Cognitive Development, 3 (3),
299–321.

Landauer, T., & Dumais, S. (1997). A solution to Plato’s
problem: the latent semantic analysis theory of acquisition,
induction, and representation of knowledge. Psychological
Review, 104 (2), 211–240.

Li, P., Burgess, C., & Lund, K. (2000). The acquisition of word
meaning through global lexical co-occurrences. In E.V. Clark
(Ed.), Proceedings of the 30th Stanford Child Language
Research Forum (pp. 167–178). Stanford, CA: Center for the
Study of Language and Information.

Markman, E. (1990). Constraints children place on word
meanings. Cognitive Science: A Multidisciplinary Journal, 14
(1), 57–77.

Mather, E., & Plunkett, K. (2009). Learning words over time:
the role of stimulus repetition in mutual exclusivity. Infancy,
14 (1), 60–76.

Merriman, W., & Stevenson, C. (1997). Restricting a familiar
name in response to learning a new one: evidence for the
mutual exclusivity bias in young two-year-olds. Child Devel-
opment, 68, 211–228.

Meyer, A., Sleiderink, A., & Levelt, W. (1998). Viewing and
naming objects: eye movements during noun phrase pro-
duction. Cognition, 66 (2), 25–33.

Mintz, T., Newport, E., & Bever, T. (2002). The distributional
structure of grammatical categories in speech to young chil-
dren. Cognitive Science: A Multidisciplinary Journal, 26 (4),
393–424.

Monaghan, P., Chater, N., & Christiansen, M. (2005). The
differential role of phonological and distributional cues in
grammatical categorisation. Cognition, 96 (2), 143–182.

Naigles, L. (1990). Children use syntax to learn verb meanings.
Journal of Child Language, 17 (2), 357–374.

Newport, E. (1990). Maturational constraints on language
learning. Cognitive Science: A Multidisciplinary Journal, 14
(1), 11–28.

Newport, E., & Aslin, R. (2004). Learning at a distance I.
Statistical learning of non-adjacent dependencies. Cognitive
Psychology, 48 (2), 127–162.

Plunkett, K., Hu, J., & Cohen, L. (2008). Labels can override
perceptual categories in early infancy. Cognition, 106 (2),
665–681.

Statistical word learning 179

� 2010 Blackwell Publishing Ltd.



Rose, S., Feldman, J., & Jankowski, J. (2004). Infant visual
recognition memory. Developmental Review, 24 (1), 74–
100.

Saffran, J., Aslin, R., & Newport, E. (1996). Statistical learning
by 8-month-old infants. Science, 274 (5294), 1926.

Schafer, G., & Plunkett, K. (1998). Rapid word learning by
fifteen-month-olds under tightly controlled conditions. Child
Development, 69 (2), 309–320.

Siskind, J. (1996). A computational study of cross-situational
techniques for learning word-to-meaning mappings. Cogni-
tion, 61 (1–2), 39–91.

Smith, L. (2000). Avoiding associations when it’s behaviorism
you really hate. In R. Golinkoff & K. Hirsh-Pasek (Eds.),

Breaking the word learning barrier (pp. 169–174). Oxford:
Oxford University Press.

Smith, L., & Yu, C. (2008). Infants rapidly learn word–referent
mappings via cross-situational statistics. Cognition, 106 (3),
1558–1568.

Snedeker, J., & Gleitman, L. (2004). Why it is hard to label our
concepts. In D.G. Hall & S.R. Waxman (Eds.), Weaving a
lexicon (pp. 257–294). Cambridge, MA: MIT Press.

Solan, Z., Horn, D., Ruppin, E., & Edelman, S. (2005).
Unsupervised learning of natural languages. Proceedings
of the National Academy of Sciences, 102 (33), 11629–
11634.

Steyvers, M., & Tenenbaum, J. (2005). The large-scale structure
of semantic networks: statistical analyses and a model of
semantic growth. Cognitive Science: A Multidisciplinary
Journal, 29 (1), 41–78.

Swingley, D., & Aslin, R. (2007). Lexical competition in young
children’s word learning. Cognitive Psychology, 54 (2), 99–
132.

Tanenhaus, M., Spivey-Knowlton, M., Eberhard, K., & Sedivy,
J. (1995). Integration of visual and linguistic information in
spoken language comprehension. Science, 268 (5217), 1632–
1634.

Trueswell, J., & Gleitman, L. (2004). Children’s eye movements
during listening: evidence for a constraint-based theory of
parsing and word learning. In J.M. Henderson & F. Ferreira
(Eds.), The interface of language, vision, and action: Eye
movements and the visual world (pp. 319–346). New York:
Psychology Press.

von Hofsten, C., Vishton, P., Spelke, E., Feng, Q., & Rosander,
K. (1998). Predictive action in infancy: tracking and reaching
for moving objects. Cognition, 67 (3), 255–285.

Waxman, S., & Lidz, J. (2006). Early word learning. In D.

Kuhn & R. Siegler (Eds.), Handbook of child psychology (6th
edn., Vol. 2, pp. 299–335). New York: J. Wiley & Sons.

Xu, F., & Tenenbaum, J. (2007). Word learning as Bayesian
inference. Psychological Review, 114 (2), 245–272.

Yu, C. (2008). A statistical associative account of vocabulary
growth in early word learning. Language Learning and
Development, 4 (1), 32–62.

Yu, C., Ballard, D., & Aslin, R. (2005). The role of embodied
intention in early lexical acquisition. Cognitive Science: A
Multidisciplinary Journal, 29 (6), 961–1005.

Yu, C., & Smith, L. (2007). Rapid word learning under
uncertainty via cross-situational statistics. Psychological Sci-
ence, 18 (5), 414–420.

Yu, C., & Smith, L. (submitted). Hypothesis testing and asso-
ciative learning in cross-situational word learning: are they
one and the same?

Yu, C., Smith, L., Klein, K., & Shiffrin, R. (2007). Hypothesis
testing and associative learning in cross-situational word
learning: are they one and the same? In D.S. McNamara &
J.G. Trafton (Eds.), Proceedings of the 29th Annual Confer-
ence of the Cognitive Science Society (pp. 737–742). Austin,
TX: Cognitive Science Society.

Received: 29 April 2008
Accepted: 17 December 2009

180 Chen Yu and Linda B. Smith

� 2010 Blackwell Publishing Ltd.


