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This paper presents a geometrical analysis of how local interactions in a large population of
categories packed into a feature space create a global structure of feature relevance. The theory
is a formal proof that the joint optimization of discrimination and inclusion creates a smooth
space of categories such that near categories in the similarity space have similar generalization
gradients. Packing theory offers a unified account of several phenomena in human categoriza-
tion including the differential importance of different features for different kinds of categories,
the dissociation between judgments of similarity and judgments of category membership, and
children’s ability to generalize a category from very few examples.

There are an infinite number of objectively correct de-
scriptions of the features characteristic of any thing. Thus,
Murphy and Medin (1985) argue that the key problem for
any theory of categories is feature selection: picking out the
relevant set of features for forming a category and generaliz-
ing to new instances. The feature selection problem is partic-
ularly difficult because considerable research on human cat-
egories indicates that the features people think are relevant
depend on the kind of category (Murphy & Medin, 1985;
Macario, 1991; Samuelson & Smith, 1999). For example,
color is relevant to food but not to artifacts; material (e.g.,
wood versus plastic) is relevant to substance categories but
not typically to artifact categories. This leads to a circu-
larity as pointed out by Murphy and Medin; to know that
something is a pea, for example, one needs to attend to its
color, but to know that one should attend to its color, one
has to know it is a potential pea. Children as young as two
and three years of age seem to already know this and exploit
these regularities when forming new categories (Colunga &
Smith, 2005; Yoshida & Smith, 2003). This paper presents
a new analysis of feature selection based on the idea that in-
dividual categories reside in a larger geometry of other cat-
egories. Nearby categories through processes of generaliza-
tion and discrimination compete and these local interactions
set up a gradient of feature relevance such that categories that
are near to each other in the feature space have similar fea-
ture distributions over their instances. We call this proposal
”packing theory” because the joint optimization of general-
ization and discrimination yields a space of categories that
is like a suitcase of well-packed clothes folded into the right
shapes so that they fit tightly together. The proposal, in the
form of a mathematical proof, draws on two empirical re-

Linda B. Smith, Department of Psychological and Brain Sci-
ences, Indiana University, 1101 East Tenth Street, Bloomington,
Indiana 47405-7007,e-mail:smith4@indiana.edu)

sults: (1) experiments and theoretical analyses showing that
the distribution of instances in a feature space is critical to
the weighting of those features in adult category judgments
and (2) evidence from young children’s category judgments
that near categories in the feature space are generalized in
similar ways. Distributions of instances In a seminal paper,
Rips (1989) reported that judgments of instance similarity to
a category and judgments of the likelihood that the instance
is a member of the category did not align. The result, now
replicated many times, shows that people take into account
how broadly known instances vary on particular properties
(Kloos & Sloutsky, 2008; Zeigenfuse & Lee, 2009; Rips &
Collins, 1993; Holland, Holyoak, Nisbett, & Thagard, 1986;
Nisbett, Krantz, Jepson, & Kunda, 1983; Thibaut, Dupont,
& Anselme, 2002) With respect to judgments of the likeli-
hood that an instance was a member of the category, people
take into account the frequency of features across known in-
stances and do not just judge the likelihood of membership
in the category by similarity across all features. Importantly,
however, similarity judgments in Rips’ study were not influ-
enced by the frequency distribution of features across cate-
gory instances (see also, Rips and Collins, 1993; Holland et
al., 1986; Nisbett et al., 1983; Thibaut et al., 2002, Stewart
& Carter, 2002). Rather, the similarity relations of poten-
tial instances to each other and the importance of features to
judgments of the likelihood of category membership appear
to be separable sources of information about category struc-
ture with the distribution of features across known instances
most critical in determining the importance of features in de-
cisions about category membership. Figure 1 provides an il-
lustration. The figure shows the feature distribution on some
continuous dimension for two categories, A and B. A feature
that is highly frequent and varies little within a category is
more defining of category membership than one that is less
frequent and varies more broadly. Thus, a novel instance that
falls just to the right side of the dotted line would be farther
from the central tendency of B than A, but may be judged as
a member of category B and not as a member of category A.
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Figure 1. Likelihoods of instances in two categories, A and B, in
a hypothetical feature space. The solid line shows the optimal de-
cision boundary between category A and B. The broken line shows
mean value of the instances in the feature space for each category.

This is because the likelihood of that feature given category
B is greater than the likelihood of the feature given category
A. This can also be conceptualized in terms of this feature
having greater importance to category A than B.

The potentially separate contributions of similarity and the
category likelihoods of features provide a foundation for the
present theory. Similarity is a reflection of the proximity of
instances and categories in the feature space. The density
of instances in this feature space result in local distortions
of feature importance in the space, a result of competitions
among nearby categories. The result is a patchwork of local
distortions that set up a global gradient of feature importance
that constrains and promotes certain category organizations
over others as a function of location in the global geometry.
Further, in this view, the weighting of features islocally dis-
torted, but similarity is not.

Nearby categories

Studies of young children’s novel noun generalizations
also suggest that the proximity of categories to each other in
a feature space influence category formation. These results
derive from laboratory studies of how 2- and 3- year olds
generalize a category to new instances given a single exem-
plar. In these experiments, children are given a novel never-
seen-before thing, told its name (“This is a dax”) and asked
what other things have that name. The results show that chil-
dren extend the names for things with features typical of an-
imates (e.g., eyes) by multiple similarities, for things with
features typical of artifacts by shape (e.g., solid and angular
shapes), and for things with features typical of substances by
material (e.g., nonsolid, rounded flat shape). The children
systematically extend the name to new instances by different
features for different kinds (Jones, Smith & Landau, 1991;
Kobayashi, 1998; Jones & Smith, 2002; Yoshida & Smith,

2001; Markman, 1989; Booth and Waxman, 2002; Gather-
cole & Min, 1997; Imai & Gentner, 1997; Landau, Smith &
Jones, 1988, 1992, 1998; Soja, Carey, & Spelke, 1991; see
also, Gelman & Coley, 1991; Keil, 1994).

Critically, the features that cue these categories - hav-
ing eyes or legs, being angular or rounded, being solid or
nonsolid - may be treated as continuous rather than as dis-
crete and categorical features. When the degree to which in-
stances present these features is systematically varied so that
named exemplars are more or less animal-like or more or
less artifact-like (Yoshida & Smith, 2003; Colunga & Smith,
2005, 2008) children show graded generalization patterns:
Exemplars with similar features are generalized in similar
ways and there is a graded, smooth, shift in the patterns of
generalizations across the feature space. Based on an anal-
ysis of the structure of early learned nouns, Colunga and
Smith (Colunga & Smith, 2005, 2008; Samuelson & Smith,
1999) proposed that children’s generalizations reflected the
instance distributions of early learned nouns that categories
of the same general kind (artifacts versus animals versus
substances) typically have many overlapping features and
also have similar dimensions as the basis for including in-
stances and discriminating membership in nearby categories.
In brief, categories of the same kind will be similar to each
other, located near each other in some larger feature geome-
try of categories, and have similar patterns of instance distri-
butions. This has potentially powerful consequences: If fea-
ture importance is similar for nearby categories, then the lo-
cation of categories -or even one instance – within that larger
space of categories could indicate the relevant features for
determining category membership. Thus, children’s system-
atic novel noun generalizations may reflect the distribution
of features for nearby known categories.

The findings in the literature on children’s generalizations
from a single instance of a category may be summarized
with respect to Figure 2. The cube represents some large
hyperspace of categories on many dimensions and features.
Within that space we know from previous studies of adult
judgments of category structure and from children’s noun
generalizations (Soja, Carey, & Spelke, 1991; Samuelson &
Smith, 1999; Colunga & Smith, 2005) that solid, rigid and
constructed things, things like chairs and tables and shov-
els) are in categories in which instances tend to be similar in
shape but different in other properties. This category gener-
alization pattern is represented by the ellipses in the bottom
left corner; these are narrow in one direction (constrained in
their shape variability) but broad in other directions (varying
more broadly in other properties such as color or texture).
We also know from previous studies of adult judgments of
category structure and from children’s novel noun general-
izations (Soja et al., 1991; Samuelson & Smith, 1999; Col-
unga & Smith, 2005), that nonsolid, nonrigid things with ac-
cidental shapes (things like sand, powder, and water) tend
to be in categories well organized by material. This cate-
gory generalization pattern is represented by the ellipses in
the upper right corner of the hyperspace; these are broad in
one direction (wide variation in shape) but narrow in other
directions (constrained in material and texture). Finally, Col-
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unga and Smith (2005; 2008) found evidence for a gradient
of generalization patterns within one local region of feature
space of early-learned noun categories. In sum, the evidence
suggests that near categories (with similar instances) have
similar generalization patterns and far categories (with dis-
similar instances) have dissimilar generalization patterns.

At present Figure 2 represents a theoretical conjecture,
one based on empirical evidence about one small region of
the space of human categories and one that has not been
theoretically analyzed. Still, it is a particularly interesting
conjecture in the context of Rips’ (1989) insight that the dis-
tributions of features are distinct from similarity and deter-
mine the relative importance of features in category judg-
ment. Packing theory builds on these two ideas: distributions
of instances and proximity of categories in the feature space
to suggest how they jointly determine feature selection.
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Figure 2. A hyperspace of categories. The ellipses represent cate-
gories with particular. generalization patterns (constrained in some
directions but allowing variability in others). Packing Theory pre-
dicts that near categories in the space will have similar generaliza-
tion patterns and that there should be a smooth gradient of changing
category generalizations as one moves in any direction in the space.
Past research shows that categories of solid, rigid and constructed
things are generalized by shape but categories of nonsolid, nonrigid,
and accidentally shaped things are generalized by material. Packing
Theory predicts a graded transition in feature space between these
two kinds of category organizations.

Starting Assumptions

Three theoretical assumptions form the backdrop for
Packing Theory. First, as in many contemporary theories
of categorization, we take an exemplar approach (Nosofsky,
1986; Ashby & Townsend, 1986; Nosofsky, Palmeri, &
McKinley, 1994). We assume that noun categories begin
with mappings between names and specific instances with
generalization to new instances by some weighted function
of feature similarity. Packing is about those weighted fea-
tures. This means that categories do not have fixed or rule-
like boundaries but rather probabilistic boundaries. Second,

we assume that at the probabilistic edges of categories, there
is competition among categories for instances. Competition
characterizes representational processes at the cognitive, sen-
sory, motor, cortical and subcortical levels. In general, ac-
tivation of a representation of some property, event or ob-
ject is at the expense of other complementary representations
(Duncan, 1996; Beck & Kastner, 2009; Marslen-Wilson,
1987; Swingley & Aslin, 2007). Packing theory proposes
that near by categories have similarly shaped generalizations
patterns because of the joint optimization of including nearby
instances and discriminating instances associated with differ-
ent categories. Third, the present approach assumes some
feature-based representation of categories (McRae, Cree,
Seidenberg, & McNorgan, 2005). However, we make no as-
sumptions about the specific nature of these features or these
origins. Although we will use perceptual features in ours dis-
cussions and simulations, the relevant features could be per-
ceptual, functional or conceptual. Packing Theory is a gen-
eral theory, about any distribution of many instances in many
categories across any set of features and dimensions. More-
over, the theory does not need the right pre-specification of
the set of features and dimensions. Optimization within the
theory depends only on distance relations in the space (and
thus on the number of orthogonal, that is uncorrelated, di-
mensions but not on any assumptions about what orthogonal
directions in that space constitute the dimensions). Further,
the predictions are general; along any direction in that space
(a direction that might consist of joint changes in two psy-
chological dimensions, angularity and rigidity, for example),
one should see near categories having more similar gener-
alization patterns and far categories having more different
generalization patterns. To present the theory, we will of-
ten use figures illustrating instance and category relations in
a two-dimensional space; however, the formal theory as pre-
sented in the proof -and the conceptual assumptions behind
it -assume a high dimensional space.

Packing Theory

Geometry is principally about how one determines neigh-
bors. If the structure of neighboring categories determines
feature selection, then a geometrical analysis should enhance
our understanding of why categories have the structure they
do. Figure 2 is the starting conjecture for the theory pre-
sented here and it suggests that near categories have similar
instance distributions whereas as far categories have more
dissimilar instance distributions. Thus, a geometry is needed
when it represents both local distortions and the more global
structure that emerges from a space of such local distor-
tions. Many theorists of categorization have suggested that
although Euclidean assumptions work well within small and
local stimulus spaces, a Riemann (or non-Euclidian) geom-
etry is better for characterizing the local and global struc-
ture of large systems of categories (Tversky & Hutchinson,
1986; Griffiths, Steyvers, & Tenenbaum, 2007; Steyvers &
Tenenbaum, 2005). Packing Theory follows this lead. We
first present a conceptual understanding of the main idea that
packing categories into a space creates a smooth structure
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and then the formal proof.

Well-Packed Categories

Figure 3 shows three different sets of categories
distributed uniformly within a (for exposition only 2-
dimensional) feature space. Figure 3a shows a geometry,
like that of young children; near categories have similar pat-
terns of feature distributions and far categories have different
ones. Such a geometry is not logically necessary (though it
may be psychologically likely). One could have a geome-
try of categories like that in Figure 3b, where each category
has its own organization unrelated to those of near neighbors
and more specifically, a geometry in which near categories
do not share similar feature importance. The two spaces of
categories illustrated in Figure 3a and 3b are alike in that in
both of these spaces there is little category overlap. That is,
in both of these spaces, the categories discriminate among
instances. However, the categories in 3b are not smooth in
that near categories have different shapes. Moreover, this
structure leads to gaps in the space, possible instances (fea-
ture combinations) that do not belong to any known category.
The categories in Figure 3b could be pushed close together
to lessen the gaps. However, given the nonsmooth structure,
there would always be some gaps, unless the categories are
pushed so close that they overlap as in Figure 3c. Figure 3c
then shows a space of categories with no gaps, but also one in
which individual categories do not discriminate well among
instances. The main point is that if neighboring categories
have different shapes there will either be gaps in the space
with no potential category corresponding to those instances
or there will be overlapping instances. A smooth space of
categories, a space in which nearby categories have similar
shapes, can be packed in tighter. This is a geometry in which
categories include and discriminate among all potential in-
stances.

1

(a) Smooth categories (b) Categories with gaps

(c) Overlapping categories

Figure 3. A cartoon of populations of categories in a feature space
illustrating three different ways those might categories might fit into
the space. Each ellipsis indicates equal-likelihood contour of cate-
gory. The broken enclosure indicates the space of instances to be
categorized.

Packing Theory proposes that a smooth space of cate-
gories results from the optimization with respect to two con-
straints: minimizing gaps and minimizing overlap. These
constraints are understood in terms of the joint optimization
of including all experienced and potential instances in a cat-
egory and discriminating instances of nearby categories. The
inclusion-discrimination problem is illustrated with respect
to the simple case of two categories in Figure 4. Each cate-
gory has a distribution of experienced instances indicated by
the diamonds and the crosses. We assume that the learner
can be more certain about the category membership of some
instances than others can; that is, the probability that each
of these instances is in the category varies. If a category is
considered alone, it might be described in terms of its cen-
tral tendency and estimated category distribution of instances
(or covariance of the features over the instances). The solid
lines that indicate the confidence intervals around each cat-
egory illustrate this. However, the learner needs to consider
instances not just with respect to a single category, but also
with respect to nearby categories. Therefore, such a learner
might decrease the weight of influence of any instance on
the estimated category structure by a measure of its confus-
ability between the categories. This is plausible because the
shared instances in between these nearby categories are less
informative as exemplars of categories than the other non-
confusing instances. Thus, the estimation of category struc-
ture may “discount” the instances in between the two cate-
gories. Doing this results in an estimated category distribu-
tion, that is shifted such that the generalization patterns for
the two categories are more aligned and more similar, which
is shown with dotted lines. This is the core idea of packing
theory.
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Figure 4. Two categories and their instances on two-dimensional
feature space. The dots and crosses show the respective instances
of the two categories. The broken and solid ellipses indicate equal-
likelihood contours with and without consideration to category dis-
crimination respectively.
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Formulation of the Theory

It is relatively difficult to describe the whole structure
formed by a large number of categories when they locally in-
teract across all categories at once.N categories haveN(N−1)

2
possible pairs of categories. Moving one category to maxi-
mize its distance from some other category may influence the
other (N − 1) categories, and those other categories’ move-
ments will have secondary effects (even on the first one),
and so forth. Thus, two categories that compete with each
other in a local region in a feature spaceinfluence the whole
structure by chains of category interactions. The goal of the
theory formulation is to describe the dynamics of category
inclusion and discrimination in a general case, and to specify
a stable optimal state for theN-categories case. Mathemati-
cally, the framework can be classified in one of variant of a
broad sense of the Linear Discriminant Analysis (LDA, see
Duda, Hart, & Stork, 2000) , although we do not necessarily
limit the theory to employ only linear transformation or as-
sume homoscedastic category distributions (See also, Ashby
& Townsend, 1986 for the similar formulation using normal
distribution in psychological field) .

Inclusion

We begin with a standard formalization of the distribu-
tion of instances in a category as a multidimensional normal
distribution; that is, the conditional probabilistic density of
an instance having featureθ given categoryci is assumed to
follow a multi-dimensional normal distribution:

P(θ|ci) =
{
(2π)2 |σi |

}− 1
2 exp

[
−1

2
(θ − µi)

Tσ−1
i (θ − µi)

]
(1)

whereµi andσi are respectively mean vector and covariance
matrix of the features that characterize the instances of cat-
egoryci . The superscript “T” indicates transposition of the
matrix. We identify the central tendency and distribution pat-
tern of these features as the mean vector of the category, and
the covariance matrix respectively. The motivation of this
formulation of category generalization derives from Shepard
(1958) characterization of the generalization gradient as an
exponential decay function of given psychological distance.

When we haveKi instances (k = 1,2, ...,Ki) for category
ci , the log-likelihoodGi that these instances come from cat-
egoryci is the joint probability of all instances

Gi = log

 K∏
k=1

P(xk|ci)P(ci)

 = Ki∑
k=1

Gik (2)

whereGik = log {P(xk|ci)P(ci)}.
Note that log(x) is a monotonic function for allx > 0.

Thus we can identify a solution ofx that maximizes the
log-likelihood. For all categories (i = 1,2, ...,N), the log-
likelihood isG =

∑N
i=1 Gi .

G =
N∑

i=1

Ki∑
k=1

log {P(xk|ci)P(ci)} (3)

This is the formal definition of the likelihoods of instances
with respect to individual categories, which we call inclu-
sion. In this formulation, the mean vectors ˆµi and covariance
matricesσ̂i (i = 1,2, ...,N), maximize the log-likelihood
(likelihood) as follows:

µ̂i =
1
K

Ki∑
k=1

xk (4)

σ̂i =
1
K

Ki∑
k=1

(xk − µ̂i)(xk − µ̂i)
T (5)

These maximum likelihood estimates are simply the mean
vectors and covariance matrices of all instances of a category.

Discrimination

Consider the simple case with two categories in a one-
dimensional feature space as in the example from Rips
(1989) in Figure 1. Likelihoods of category A and B are
shown as the solid lines: category A has the central ten-
dency on the left side in which the instance is most likely,
and category B has the central tendency on the right side. An
optimal category judgment for a given instance is to judge
it as belonging to the most likely category. Thus the opti-
mal solution is to judge an instance on the left side of the
dashed line in Figure 1 to be in category A and otherwise to
judge it to be in category B. Meanwhile, the error probability
of discrimination in the optimal judgment is the sum of the
non-maximum category likelihood, the shaded region in Fig-
ure 1. Therefore, we formally define discriminability as the
probability of discriminating error in this optimal category
judgment.

Although the minimum or maximum function is difficult
to solve, we can obtain the upper bound of the discriminating
error (log-likelihood)Fi j for categoryci andc j as follows:

Fi j = log

[∫
Ω

{
P(θ|ci)P(θ|c j)

}− 1
2

]
(6)

In particular, when likelihoods of categories are normally
distributed, it is called the Bhattecheryya bound (Duda, Hart,
& Stork, 2000). In fact, the non-maximum likelihood of
a given pair is the classification (instance, category) error
rate and the non-maximum likelihood has the following up-
per bound: min(P(θ|ci),P(θ|c j)) ≤ P(θ|ci)αP(θ|c j)1−α where
0 ≤ α ≤ 1. Thus, Equation 6 is the upper bound of er-
ror in the optimal classification withα = 1

2. The term
P(θ|ci)αP(θ|c j)1−α is the function ofα, and a particularα
may allow the tightest upper bound with a general case ofα.
(Equation 6 is called the Chernoff bound). Here, we assume
α = 1

2 for simplification of formulation.

Fi j = −1
4

(µi − µ j)
T(σi + σ j)

−1(µi − µ j) (7)

− 1
2

log
∣∣∣∣∣12(σi + σ j)

∣∣∣∣∣ + 1
4

log
(
|σi |

∣∣∣σ j

∣∣∣) (8)
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The first term (µi − µ j)T(σi + σ j)−1(µi − µ j) indicates the
distance between mean vectors of the categories weighted
by their covariance matrices, which is zero whenµi =
µ j . And the second and third terms,− 1

2 log
∣∣∣ 1
2(σi + σ j)

∣∣∣ +
1
4 log

(
|σi |

∣∣∣σ j

∣∣∣), indicate the distance between the covari-
ance matrices of categories which is zero whenσi = σ j .
Thus, obviously the discrimination error is maximized when
µi = µ j andσi = σ j , when categoryci and c j are iden-
tical. Meanwhile the discriminating error is minimized
when the distance between two central tendencies or dis-
tributions goes to infinity

(
µi − µ j

)T (
µi − µ j

)
→ ∞ or

tr
[(
µi − µ j

)T (
µi − µ j

)]
→ ∞ where tr[X] is trace of the ma-

trix X. The minimum and maximum concern is the one com-
ponent of discrimination.

The packing metric

The joint optimization of discrimination by reducing the
discriminating error and the optimization of the inclusion of
instances with respect to the likelihood of known instances
results in a solution that is constrained to an inter region be-
tween these two extremes. In the general case withN cat-
egories, we define the sum of all possibleN(N−1)

2 pairs (in-
cluding symmetric terms) of discriminating error as discrim-
inability.

F = log

 N∑
i=1

N∑
j=1

P(ci)
1
2 P(c j)

1
2 exp(Fi j )

 (9)

More formally, we obtain a set of optimal solutions by de-
riving the differential of Equation 3 (inclusion) and Equation
8 (discrimination). Since the desired organization of cate-
gories should maximize both discriminability and inclusion
simultaneously, we define the packing metric function as a
weighted summation of Equation (3) and Equation (8) with
a multiplier :

L = G + λ(F −C) (10)

whereC is a particular constant, which indicates a level for
discriminability F to satisfy. According to the Lagrange
multiplier method, the differential of parameters∂L

∂X = 0
gives the necessary condition for the optimal solution of
X ⊂ {µi , σi , λ} on condition that the discrimination error is
a particular criterionF = C. Since the probability of dis-
crimination error is calculated for all possible pairs (cate-
gories i, j = 1, 2, ...,N), this is the maximization of likeli-
hood with latent variables of the discriminated pairs. The
optimization is computed with the EM algorithm, in which
the E-step computes the expectation with the unknown pair-
ing probability, and the M-step maximizes the expectation
of likelihood function (Dempster, Laird, & Rubin, 1977).
Thus, the expected likelihoodL, with respect to a variable
for the i-th categoryXi , is calculated:∂L

∂Xi
=

∑N
i

∑N
j Qi j

∂Fi j

∂Xi
+∑N

i

∑Ki

k Rik
∂Fik

∂Xi
, where the probability of category pairs are

Qi j =

√
P(ci )P(c j ) exp(Fi j )∑N

i=1
∑N

j=1

√
P(ci )P(c j ) exp(Fi j )

, and the probability from cat-

egories to instancesRik =
P(ci )P(xk|ci )∑N

i=1
∑Ki

k=1 P(ci )P(xk|ci )
, calculated in the

following derivation. Note thatP(xk|ci) is a given binary con-
stant variable, either one or zero, in case of supervised learn-
ing, and it should be estimated from its likelihood in case of
unsupervised learning.

Optimal solutions for covariance matrices

Consider the case in which the mean of a category, but
not its covariance, is specified. Packing Theory assumes a
covariance for that category derives from the optimization of
discrimination and inclusion with respect to the known cate-
gories. This is formally given as the solution of the optimal
covariance of an unknown category when the mean of the
category and the set of means and covariances of the other
known categories are given. Thus, in that case, we solve
the differential of the packing metric with respect to the co-
variance matrix. We next derive these differentials to show
that these optimal solutions imply a smooth organization of
categories in general. As a preview, the following deriva-
tions show that a solution that optimizes discrimination and
inclusion implies a particular pattern of organization, that of
smooth categories, that emerges out of chains of local cate-
gory interactions. In addition, the form of the optimal solu-
tion also suggests how known categories constrain the for-
mation of new categories.

The differential of the functions of likelihoods and dis-
criminability with respect to covariance matrixσi is,

∂Fi j

∂σi j
= −1

4
σ−1

i

{
(µi − µ̄)(µi − µ̄)T + σ̂i j − σi

}
(11)

where σ̂i j = 2σi(σi + σ j)−1σ j and µ̄i j =
1
2σ̂i j (σ−1

i µi +

σ−1
j µ j)−1σ j , and

∂Gik

∂σi
= −1

2
σ−1

i

{
(µi − xik)(µi − xik)T − σi

}
σ−1

i (12)

. See Appendix for the detailed derivation of Equation (11)
and (12). Since a covariance matrix must be a positive def-
inite, we parameterize the covariance matrixσi using itsl-
th eigenvectoryil and l-th eigenvalueηil (l = 1,2, ...,D),
that isσi =

∑D
l=1 ηil yil yT

il . Solving ∂L
∂yil
=

∑N
i=1

∑Ki

k=1
∂Gik

∂yil
+

λ
∑N

i=1
∑N

j=1
∂Fi j

∂yil
, we obtain the following generalized eigen-

value problem1 (See also Appendix): Ki∑
k=1

Rik(Sik − σi) − λ
N∑

j=1

Qi j (Ŝi j + σ̂i j − σi)

 yil = 0 (13)

1 Since the matrix in Equation (13) includes ˆσi j or Ŝi j which
hasσi inside, it is not a typical eigenvalue problem, which has a
fixed matrix. Equation (13) can be considered an eigenvalue prob-
lem only whenσi is given. Thus, iterative method for eigenvalue
problems such as the power iteration method would be preferable
to calculate numerical values.
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whereSik = (xik−µi)(xik−µi)T andŜi j = (µ̄i j −µi)(µ̄i j −µi)T .
Because Equation (13) is also an eigenvalue form with a par-
ticular constantλ, we identifyλ = η−1

il and, using the rela-
tionship between the eigenvector and its matrixσiyil = ηil yil ,
we obtain the quadratic eigenvalue problem.

(η2
ilΦi2 + ηilΦi1 + Φi0)yil = 0 (14)

whereΦi0 =
∑N

j=1 Qi j (σ̂i j + Ŝi j ), Φi1 = −
∑Ki

k=1 Rikσik −∑N
j=1 Qi j , Φi2 =

∑Ki

k=1 Rik ID, and ID is D-th order identity
matrix.

The Equation (13) indicates that the specific structure of
category distribution consists of three separate components.
The first component inΦi1 which includesSik represents the
deviation of instances from the central tendency of category
(scatter matrix of instances). The first term inΦi0 represents
the “harmonic mean” of nearby covariance matrices ˆσi j . The
second term inΦi0 represents the scatter matrixŜi j that char-
acterizes local distribution of the central tendencies to nearby
categories.

To understand the meaning of these components, we draw
the geometric interpretation of these three components, the
scatter matrix of instancesSik, the scatter matrix of cate-
gories Ŝi j , and the harmonic mean of covariance matrices
σ̂i j (Figure 5). The probabilistic densityQi j weighting to
each component exponentially decays in proportion to the
“weighted distance”Fi j between categoryci and c j . This
“weighted distance” is with respect to the distance between
central tendencies and also thedistance between covariance
matrices. That means that interactions among categories are
limited to a particular local region. In Figure 5b, the likeli-
hood contours of the closest categories to a target category
are shown as ellipses, and the probabilistic weightingQi j be-
tween the target category (center) and others is indicated by
the shading. With respect to this locality, the scatter matrix
of categoriesŜi j reflects the variance pattern from the cen-
ter of categoryci to other relatively “close” category centers.
The harmonic means of covariance matrices ˆσi j indicate the
averaged covariance matrices among the closest categories.
Note that it is a “harmonic” average, not an “arithmetic”
one, because the inverse (reciprocal number) of the covari-
ance matrix (and not the covariance matrix per se) is appro-
priate for the probabilistic density function with respect to
inclusion and discriminability. The point of all this is that
categories with similar patterns of covariance matrices that
surround another category, will influence the surrounded cat-
egory, distorting the feature weighting at the edges so that
the surrounded category is more similar to the surrounding
categories in its instance distributions.

These effects depend on the proximity of the categories
and the need to discriminate instances at the edge of the dis-
tributions of adjacent categoriesSi is covariance of instances
belonging to a category, which is the natural statistical prop-
erty with respect to the likelihood of instances without dis-
criminability. The magnitude ofQi j andRik are quite influ-
ential in determining the weighting between the likelihood
of the instances of a category and the discriminability be-
tween categories. IfQi j → 0( j = 1,2, ...,N). Thus, if the

1
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Figure 5. An illustration of the local interactions among adjacent
categories according to the packing theory. Each ellipsis indicates
equal-likelihood contour of category. The star shows a central ten-
dency of a focal category, and triangles show the few experienced
instances of this focal category. The covariance matrix of the focal
category is estimated with deviation of instances (triangles;Sik),
harmonic mean covariance matrix (ellipses) of adjacent categories
(σ̂i j ), and deviation of central tendencies (filled circles) of adjacent
categories (̂Si j ).

distances of the central tendencies among categories increase
(increasing gaps), the estimated category distribution will de-
pend only on the covariance of instancesSi . Meanwhile, if
the number of experiences instances of categories decreases
(i.e., Ki → 0 or Rik → 0(k = 1,2, ...,Ki)) but proximity
to other categories remains the same, the estimated category
distributions will depend more on discriminability, (Ŝi j +σ̄i j )
2. That is, when the number of known instances of some
category is small, generalization to new instances will be
more influenced by the known distributions of surrounding
categories. However, when there are already many known
instances of a category, the experiences instances - and the
known distribution of that category - will have a greater effect
on judgments of membership in that category (and a greater
effect on surrounding categories).

Optimal solutions for mean vectors

In the previous section, the optimal solution of covariance
matrices was derived for a given set of fixed mean vectors.
The optimal solutions for mean vectors may also be written
as eigenvectors of a quadratic eigenvalue problem. The dif-
ferential of discriminability and inclusion with respect to the
mean vectors are:

∂Fi j

∂µi
= −1

2
(σi + σ j)

−1(µi − µ j) (15)

2 Although too few instances may cause a non-full-rank covari-
ance matrix whose determinant is zero (i.e.,|σi | = 0), in this special
case, we still assume a particular variability|σi | = C. See also
Method in Analysis 4.
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and
∂Gik

∂µi
= −σ−1

i (µi − xik) (16)

. Then

∂LN

∂µi
= −

Ki∑
k=1

Rikσ
−1
i (µi − xik) + λ

N∑
j=1

Qi j (σi + σ j)
−1(µi − µ j)

(17)
The equation is rewritten with N times larger order of matrix
as follows.

Σ−1(R̄µ − x̄) − λΦµ = 0 (18)

In Equation 18, each term is as follows:µ = (µT
1 , µ

T
2 , ..., µ

T
N)T ,

x̄i =
(∑Ki

k=1 R1kxT
1k,

∑Ki

k=1 R2kxT
2k, ...,

∑Ki

k=1 RNkxT
Nk

)T
,

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σN

 (19)

,

R̄=


ID

∑K1
k=1 R1k 0 . . . 0
0 ID

∑K2
k=1 R2k . . . 0

...
...

. . .
...

0 0 . . . ID
∑KN

k=1 RNk

 (20)

, and

Φ =


∑N

i=1 Q̄1i − Q̄11 Q̄12 . . . Q̄1N

Q̄21
∑N

i=1 Q̄2i − Q̄22 . . . Q̄2N
...

...
. . .

...
Q̄N1 Q̄N2 . . .

∑N
i=1 Q̄Ni − Q̄NN


(21)

whereQ̄i j = Qi j (σi + σ j)−1.
Since this equation indicates a typical form of the least

square error with a constraint, it is also rewritten as a typical
quadratic eigenvalue problem as follows (Tisseur & Meer-
bergen, 2001):

(λ2ID − 2λΣ̄2 − α−2Σ̄x̄x̄T Σ̄)µ = 0 (22)

whereΣ̄ = R̄Σ−1R̄ andα2 = µTΦµ. Thus, the optimal mean
vectorµ is one of the eigenvectors given by this eigenvalue
problem. This also suggests a similar structure as in the
optimal solution for the covariance. The magnitude ofQi j
andRik are quite influential in determining the weighting be-
tween the likelihood of the instances of a category and dis-
criminability between categories. If the distances between all
pairs of categories are infinite (i.e.,Qi j → 0( j = 1,2, ...,N)),
the optimal mean vector mainly depends on mean vectors of
instances (and the matrix assigning instances to categories
) which is purely given by a set of instances (i.e., we obtain
µ = R̄−1x̄ by assumingΦ = 0 on Equation (22)). On the other
hand, if the number of instances of categories decreases (i.e.,

Ki → 0 or Ri j → 0(k = 1,2, ...,Ki) ), the optimal mean vec-
tor depends on both central tendency ¯x and distributionΣ of
instances (i.e., we obtainΦµ = λ−1Σ−1x̄ by assuminḡR= 0).
Thus in the latter extreme situation, the central tendenciesµ
strongly depends on the estimated distribution of instances
of each categoryΣ. In other words, this optimization of cen-
tral tendencies also indicates the emergence ofsmoothcat-
egories, that is, there is predicted correlation between dis-
tances in central tendencies and distributions. This correla-
tion between the distance of two categories and their feature
distributions is a solution to the feature selection problem.
The learner can know the relevant features for any individual
category from neighboring categories.

Analysis 1: Is the Geometry of
Natural Categories Smooth?

If natural categories reside in a packed feature space in
which both discrimination and inclusion are optimized, then
they should show a smooth structure. That is, near-by natural
categories should not only have similar instances, but they
should also have similarfrequency distributionsof features
across those instances. Analysis 1 provides support for this
prediction by examining the relation between the similarity
of instances and the similarity of feature distributions for 48
basic level categories.

A central problem for this analysis is the choice of fea-
tures across which to describe instances of these categories.
One possibility that we considered and rejected was the use
of features from feature generation studies (McRae et al.,
2005; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976;
Samuelson & Smith, 1999). In these studies, adults are given
a category and asked to list the features characteristic of
items in each category (e.g., has legs, made of wood, can
be sat on). The problem with this approach is that the fea-
tures listed by adults as important to those queried categories
have (presumably) already been selected by whatever cogni-
tive processes make categories coherent. Thus, there is the
danger that the use of these generated features presupposes
the very phenomenon one seeks to explain. Accordingly, we
chose to examine a broad set of polar dimensions unlikely
to be specifically offered as important to any of these cate-
gories. The specific features chosen do not need to be the
exactly right features nor comprehensive. All they need to
do is capture a portion of the similarity space in which in-
stances and categories reside. If they do and if the packing
analysis is right, these features should nonetheless define an
n-dimensional space of categories, which shows some de-
gree of smoothness: categories with instances similar to each
other on these features should also show similar category
likelihoods on these features.

To obtain this space, 16 polar opposites (e.g., wet-dry,
noisy-quiet, weak-strong) were selected that broadly encom-
pass a wide range of qualities (Osgood, Suci, & Tannenbaum,
1957; Hidaka & Saiki, 2004), that are also (by prior analyses)
statistically uncorrelated (Hidaka & Saiki, 2004) but that nei-
ther by introspection nor by prior empirical studies seem to
be specifically relevant to the particular categories examined
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in this study. In this way, we let the packing metric select the
locally defined features.

The analysis is based on the assumption that categories
with more variability in their feature distributions in the
world will yield more variability in the subjects’ judgments
about the relevant features. Thus, the mean of the subjects’
judgments for any category is used as an estimate of the mean
of the feature distributions for the category and the covari-
ance of the subjects’ judgments is used as an estimate of co-
variance.

Method

Participants

The participants were 104 undergraduate and graduate
students at Kyoto University and Kyoto Koka Women’s Uni-
versity.

Stimuli

Participants were tested in Japanese. The English trans-
lations of the 16 adjective pairs in English were dynamic-
static, wet-dry, light-heavy, large-small, complex-simple,
slow-quick, quiet-noisy, stable-unstable, cool-warm, natural-
artificial, round-square, weak-strong, rough hewn-finely
crafted, straight-curved, smooth-bumpy, hard-soft. The 48
noun categories, in English, are butterfly, cat, fish, frog,
horse, monkey, tiger, arm, eye, hand, knee, tongue, boots,
gloves, jeans, shirt, banana, egg, ice cream, milk, pizza, salt,
toast, bed, chair, door, refrigerator, table, rain, snow, stone,
tree, water, camera, cup, keys, money, paper, scissors, plant,
balloon, book, doll, glue, airplane, train, car, bicycle. These
nouns were selected to be common with early ages of acqui-
sition (Fenson et al., 1994).

Procedure

Participants were presented with one noun at a time and
asked to judge the applicability of the 16 adjective pairs on
a 5-point scale. For example, if the adjective pair wassmall-
big, and the noun waschair, participants would be asked to
rate the size of typical instances of a chair on the scale of
1 (indicating small) to 5 (indicating big). The presented or-
der of the list of 48 nouns by 16 dimension-rating scale was
randomly determined and differed across subjects.

The Smoothness index

The adult judgments generate an initial space defined by
the 48 noun categories and the mean and variance of the rat-
ings of these nouns on the 16 polar dimensions. The meanµi
and covarianceσi of i-th category over instances, is defined
as the central tendencies and generalization patterns (Equa-

tion 24).

µi =
1
M

M∑
k=1

dik (23)

σi =
1
M

M∑
k=1

(dik − µi)(dik − µi)
T (24)

whereM is number of subjects (104) anddik is 16 dimen-
sional column vector havingk-th subjects’ adjective ratings
of i-th category. The smoothness index of the given cate-
gories is defined by the correlation of central tendencies and
covariance as follows:

S =

∑
i, j<i(||µi j || − ||µ̄||)(||σi j || − ||σ̄||)√∑

i, j<i(||µi j || − ||µ̄||)2
∑

i, j<i(||σi j || − ||σ̄||)2
(25)

whereS is the smoothness index, a correlation coefficient be-
tween all possible paired distances of central tendencies||µi ||
and ||σi j ||. ||µi j || =

{
(µi − µ j)T(µi − µ j)

}− 1
2 is the Euclidian

distance of the paired central tendencies of categoryi and
j (µi is the mean vector given as dimensional column vec-

tor). ||σi j || = tr
{
(µi − µ j)T(µi − µ j)

}− 1
2 is the Euclidian dis-

tance of paired generalization patterns of categoryi and j (
σi is covariance matrix given as dimensional square matrix).
||µ̄|| = N−1 ∑

i, j<i ||µi j || and ||σ̄|| = N−1 ∑
i, j<i ||σi j || with top

bars indicates the mean of||µi j || and||σi j || respectively where
N is number of possible combinations of pairs fromn cate-
gories.

In sum, smoothness is measured as a correlation between
the distance of categories, which is measured by the distances
of the central tendencies, and the generalization pattern for
each category, which is measured by the category’s covari-
ance matrix. Accordingly, we calculated the distances of the
central tendencies for each of the 48 categories to each other
and the distances of the generalization patterns (the covari-
ance matrices) for each of the 48 categories to each other.
If categories that are near in the feature space have similar
generalization patterns, than the two sets of distances should
be correlated with each other. Because distances between the
means of categories A and B are dependent of the distances
between the means of categories B and C3, we sampled in-
dependent paired distances in which no category appears in
two different pairs. For 48 categories, the number of possi-
ble combinations of independent pairs is48!

224 . We analyzed
the median and the empirical distribution of 1000 such sam-
plings. We also transformed the rating data using a logistic
function, which corrects for the bounded rating scale. This
corrected covariance ˆσi j and mean ˆµi (having range [−∞,∞])

3 In fact, for arbitrary points A, B, and C, the triangle inequality
|AB| + |BC| > |CA| is true, where|AB| is a metric between point A
and B.
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of dimensionsi and j is defined by the following equation:

σ̂i j = σi j

{
pi(1− pi)p j(1− p j)

}− 1
2

µ̂i = log pi − log(1− pi)

pi =
µi − 1

4

whereµi is mean ofi-th dimension (range 1 to 5), andpi is
normalized mean having the range from zero to one. As the
first differential with respect to corrected mean ˆµi of logistic
function pi = (1 + exp(αµ̂i))−1 is proportional topi(1 − pi)
whereα is a particular constant, we use this differential to
transform mean and variance to theoretically homoscedas-
tic space with mean ˆµi and covariance ˆσi j . The corrected
meanµ̂i and covariance ˆσi j are used for the smoothness in-
dex instead of the raw meanµi and covarianceσi j . (See also
Generalized Linear Model (McCullagh & Nelder, 1989) for
the detail of logistic analysis.) As a supplemental measure,
we also calculated smoothness by normalizing variance us-
ing a correlation matrix instead of a covariance matrix. The
potential value of this approach is that it ignores artificial
correlations between means and (the absolute value of) the
variance.

Results and Discussion

Figure 6a shows a scatter plot of all possible pairs of cate-
gories; the x-axis is the Euclidian distance of the paired cor-
rected mean vectors and the y-axis is the Euclidian distance
of the paired corrected covariance matrices. The correlation
between these two variables (with no dependence of paired
distances) is the Smoothness index (See Equation 25 for its
definition). The median correlation was 0.537 (95% confi-
dence interval is from 0.223 to 0.756.). Figure 6b shows
the same scatter plot using the correlation matrix instead of
the covariance matrix as the measure of category likelihood;
here the median correlation was 0.438 (95% confidence in-
terval is from 0.137 to 0.699). These positive correlations
between the distances of central tendencies and the distances
of category likelihoods provide a first indication that natural
categories may be smooth.

Figure 6 raises an additional possible insight. Not only do
categories near each other in feature space show similar pat-
terns of feature distribution, but across categories the changes
in the feature distributions appear to be continuous, both in
terms of location in the feature space and in terms of the fea-
ture likelihoods. This seamlessness of transitions within the
space of categories is suggested by the linear structure of the
scatter plot itself. This can emerge only if there are no big
jumps or gaps in feature space or in the category likelihoods.

Critically, the features analyzed in this study were not pre-
selected to particularly fit the categories and thus the ob-
served smoothness seems unlikely to have arrived from our
choice of features or a priori notions about the kind of fea-
tures that are relevant for different kinds of categories. In-
stead, the similarity of categories on any set of features (with
sufficient variance across the category) may be related to the
distribution of those features across instances.

Categories whose instances are generally similar in terms
of their range of features also exhibit similar patterns of fea-
ture importance. The mathematical analysis of Packing The-
ory indicates that this could be because of the optimization of
discrimination and generalization in a geometry of crowded
categories.
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Figure 6. If a space is smooth then the nearness of the categories
(distances of the means) and similarity of the generalization patterns
should be correlated. The two figures differ in their respective mea-
sures of the similarity of the generalization patterns of categories:
(a) Scatter plot of the Euclidean distances of the covariance matri-
ces and the Euclidean distances of the means for pairs of categories.
This correlation is the smoothness index, S=0.537. (b) Scatter plot
of the Euclidean distances of the correlation matrices and the Eu-
clidean distances of the means for pairs of categories, (S=0.438).

Analysis 2: Learning a New
Category

According to Packing Theory, the generalization of a cat-
egory to new instances depends not just on the instances that
have been experienced for that category but also on the dis-
tributions of known instances for nearby categories. From
one, or very few new instances, generalizations of a newly
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encountered category may be systematically aligned with the
distributions of instances from surrounding categories. This
is illustrated in Figure 7: a learner who already knows some
categories (shown as solid ellipses in Figure 7a) and observes
the first instance (a black star) of a novel category (a bro-
ken ellipsis) may predict the unknown generalization pattern
shown by the broken ellipsis (Figure 7b). Because nearby
categories have similar patterns of likelihoods, the system
(via competition among categories and the joint optimization
of inclusion and discrimination) can predict the likelihood of
the unknown category, a likelihood that would also be similar
to other known and nearby categories in the feature space. If
categories did not have this property of smoothness, if they
were distributed like that in Figure 7c, where each category
has a variance pattern unrelated to those of nearby categories,
the learner would have no basis on which to predict the gen-
eralization pattern. The goal of Analysis 2 is to show that
the packing metric can predict the feature distribution pat-
terns of categories unknown to the model. In the simulation,
the model is given the mean and covariance of 47 categories
(from Analysis 1) and then is given a single instance of the
48th category. The model’s prediction of the novel proba-
bilistic density is calculated by an optimal solution with re-
spect to the configuration of surrounding known noun cate-
gories.
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Figure 7. (a) Each ellipsis indicates the equal-likelihood contour.
Two schematic illustrations of a (b) smooth (c) and non-smooth
space of categories. The broken ellipsis in each figure indicates
the equal-likelihood contour of the unknown category, and the star
indicates a given first instance of that category. The solid ellipses
indicate equal-likelihood contour of known categories. A smooth
space of categories provides more information for predicting the
likelihood of the novel category contour.

Method

On each trial of the simulation, one target category is as-
signed as unknown; the other 47categories serve as the back-
ground categories that are assumed to be already learned.
Each of the background-knowledge categories is assumed to
have a normal distribution, and the model predicts the covari-
ance matrix of the target category of the base on the given

mean vectors and covariance matrices of the categories that
comprise the model’s background knowledge. Because chil-
dren are unlikely to have complete knowledge of any cate-
gory, the mean and covariance for the background categories
are estimated from a random sampling of 50% of the adult
judgments. This is done 50 times with each of the 48 noun
categories from Analysis1 serving as the target category.

Estimation of a novel category from the first instance.
Within the packing model, the variance (and covariance) of
the probabilistic density function is a critical determiner of
the feature dimensions that are most important for a local
region and category. Thus, to predict the distribution of in-
stances for the target category, a category for which only one
instance is given, we derive the covariance estimation for the
whole category. To do this, we let the scatter matrix of cate-
gory i be zero (i.e.,Si ≈ 0) by assuming the first instance is
close to the true mean (i.e.,Ki = 1 andxil = µi). In addition,
we assume that the unknown likelihood of the novel category
takes the formGi − log(C) whereC is a particular constant.
In particular, in case . Based on this assumption, we can
obtain the covariance matrix of categoryCi (σi) by solving
the Equation (13). Then the optimal covariance of the novel
category is given as follows:

σi = Ĉ
N∑

j=1

Qi j

(
Ŝi j + σ̂i j

)
(26)

whereĈ = C
∣∣∣∣∑N

j=1 Qi j

(
Ŝi j + σ̂i j

)∣∣∣∣ is derived from the con-

straint ∂LN

∂λ
= Gi−C = 0. Thus, estimatedσi in Equation (26)

optimize the packing metric, and it is considered as a special
case of the general optimal solution when the covariance ma-
trix of instances is collapsed to be zero (because there is the
only instance). This equation indicates that a novel category
with only instance can be estimated with harmonic mean of
nearer known covariance matrices ( ˆσi j ) and nearer scatter
matrix of weighted means (Ŝi j ). This directly means the co-
variance matrix of the novel category is estimated from the
other covariance matrices of nearby categories.

We used Equation (26) in order to calculate a covariance
matrix of a novel categoryσi from an instance sampled from
the category (Ki = 1, xk = µi) and other known categories (µ j
andσ j , j = 1,2, ..., i−1, i+1, ..., 48). The scaling constant in
Equation (26) is assumed to have the same determinant of co-
variance matrix as the target category as the adult judgment
has (i.e,C = |Si | so as to have|σi | = |Si | ).

Control comparisons. The packing metric predicts the dis-
tribution of instances in the target category by taking into
account its general location (indicated by the one given in-
stance) and the distributions of known instances for nearby
categories. It is thus a geometric solution that derives not
from what is specifically known about the individual cate-
gory but from its position in a geometry of many categories.
Accordingly, we evaluate this central idea and the packing
model’s ability to predict the unknown distribution of in-
stances by comparing the predictions of the packing model
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to two alternative measures of the distribution of instances
in feature space for that target category that take into ac-
count only information about the target category and not in-
formation about neighboring categories. These two alterna-
tive measures are: (1) the actual distribution of all instances
of the target category as given by the subjects in Analysis 1
and (2) three randomly selected instances from that subject
generated distribution of instances. The comparison of the
predictions of the packing metric to the actual distribution
answers the question of how well the packing metric gener-
ates the full distribution given only a single instance but in-
formation about the distributions of neighboring categories.
The second comparison answers the question of whether a
single instance in the context of a whole geometry of cat-
egories provides better information about the shape of that
category than more instances with no other information.

Results and Discussion

The predicted covariance of the target category by the
packing model correlates strongly with the actual distribu-
tion of instances as generated by the subjects in Analysis
1. Specifically, the correlations between the packing met-
ric predictions for the target category and measures of the
actual distributions from Analysis 1 were 0.876, 0.578 and
0.559 for the covariances and variances (136 dimensions),
the variances considered alone (16 dimensions) and the co-
variances considered alone (120 dimensions). These are ro-
bust correlations overall; moreover, they are considerably
greater than those derived from an estimation of the target
category from three randomly chosen instances. For this
”control” comparison, we analyzed the correlation of covari-
ance matrix for each category calculated from randomly cho-
sen three instances of adults’ judgment with that calculated
from the whole set of instances. Their average correlations
of 50 different random set of samples were 0.2266 in vari-
ances (S.D.=0.2610), 0.2273 in covariance (S.D.=0.1393)
and 0.4456 in both variance and covariance (S.D.=0.0655).
The packing metric –given one instance andinformation
about neighboring categories– does a better job predicting
category shape than a prediction from three instances. In
sum, the packing metric can generate the distribution of in-
stances in a category using its location in a system of known
categories. This result suggests that a developing system
of categories should, when enough categories and their in-
stances are known, enable the learner to infer the distribution
of newly encountered categories from very few instances.
A geometry of categories –and the local interactions among
them– creates knowledge ofpossiblecategories.

There are several open questions with respect to the joint
optimization of inclusion and discrimination should influ-
ence category development in children who will have sparser
instances and sparser categories than do adults. The pro-
cesses presumed by Packing Theory may be assumed to al-
ways be operation as they seem likely to reflect core oper-
ating characteristics (competition) of the cognitive system.
But their effects will depend on the density of categories and
instances in local regions of the space. An implication of

the simulation is that the accuracy of novel word generaliza-
tions will be monotonic increasing function of number of cat-
egories. But here is what we do not know: As children learn
categories, are some regions dense (e.g., dense animal cate-
gories) and other sparse (e.g., tools)? Are some regions of
the space -even those with relatively many categories -sparse
in the sense of relatively few experienced instances of any
one category? Knowing just how young children’s category
knowledge ”scales up” is critical to testing the role of the
joint optimization proposed by Packing Theory in children’s
category development.

The formal analyses show that for the bias inherent in
the joint optimization of discrimination and inclusion require
many categories (crowding) and relatively many instances
in these categories. This crowding will also depend on the
dimensionality of the space as crowding is more likely in
a lower than in a higher dimensional space, and we do not
know the dimensionality of the feature space for human cat-
egory judgments. This limitation does not matter for test-
ing general predictions since the optimization depends only
on distance relations in the space (and thus on the number
of orthogonal, that is uncorrelated, dimensions but not on
any assumptions about what orthogonal directions in that
space constitute the dimensions) and since the prediction of
smoothness should hold in any lower-dimensional charac-
terization of the space. The specification of the actual di-
mensionality of the space also may not matter for relative
predictions about more and less crowded regions of people’s
space of categories. Still, insight into the dimensionality of
the feature space of human categories would benefit an un-
derstanding of the development of the ability to generalize a
new category from very few instances.

General Discussion

A fundamental problem in category learning is knowing
the relevant features for to-be-learned categories. Although
this is a difficult problem for theories of categorization, peo-
ple, including young children, seem to readily solve the prob-
lem. The packing model provides a unified account of feature
selection and fast mapping that begins with the insight that
the feature distributions across the known instances of a cat-
egory play a strong role, one that trumps overall similarity, in
judgments as to whether some instance is a member of that
category. This fact is often discussed in the categorization
literature in terms of the question of whether instance dis-
tributions or similarity matter to category formation (Rips,
1989; Rips & Collins, 1993; Holland et al., 1986; Nisbett
et al., 1983; Thibaut et al., 2002). The packing model takes
role of instance distributions and ties it to similarity in a ge-
ometry of category in which nearby categories having sim-
ilar category-relevant features, showing how this structure
may emerge and how it may be used to learn new categories
from very few instances. The packing model thus provides
a bridge that connects the roles of instance distributions and
similarity. The fitting of categories into a feature space is
construed as the joint optimization of including known and
possible instances and discriminating the instances belong-
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ing to different categories. The joint optimization of inclu-
sion and discrimination aligns nearby categories such that
their distributions of instances in the feature space are more
alike. The chain reaction of these local interactions across the
population of categories creates a smooth space. Categories
that are similar (near in the space) have similar distributions
of instances; categories that are dissimilar (far in the space)
have more dissimilar distributions of instances.

In this way, the packing model provides the missing link
that connects similarity to the likelihood of instances. Both
similarity and feature distributions are deeply relevant to un-
derstanding how and why human categories have the struc-
tures that they do. However, the relevance is not with respect
to the structure of a single category, but with respect to the
structure of a population of categories. Smoothness implies
a higher order structure, a gradient of changing feature rel-
evance across the whole that is made out of, but transcends,
the specific instances and the specific features of individual
categories. It is this higher order structure that may be use-
able by learners in forming new categories. This higher order
structure in the feature space aligns with what are sometimes
called ”kinds” or ”superordinate categories” in that similar
categories (clothes versus food for example) will have simi-
lar features of importance and be near each other in the space.
However, there are no hard and fast boundaries and the pack-
ing does not directly represent these higher order categories.
Instead, they are emergent in the patchwork of generaliza-
tion gradients across the feature space. How such a space
of probabilistic likelihoods of instances as members of basic
level categories relates to higher and lower levels of cate-
gories (and the words one learns to name those categories) is
an important question to be pursued in future work.

Packing Theory in relation to other topographic
approaches

The packing model shares some core ideas with other to-
pographic approaches such as self-organizing maps (SOM,
see Kohonen, 1995; see also Tenenbaum, 2000; etc.) . The
central assumption underlying the algorithms used in SOM is
that information coding is based on a continuous and smooth
projection that preserves a particular topological structure.
More particularly, within this framework, information coders
(e.g., receptive fields, categories, memories) that are near
each other code similar information whereas coders that are
more distant code different types of information. Thus, SOM
and other topographical representations posit a smooth rep-
resentational space, just as the packing metric.

However, there are differences between the packing model
and algorithms, such as SOM. In the packing metric, cate-
gories may be thought of as the information coders, but un-
like the information coders in SOM, these categoriesbegin
with their own feature importance and their own location in
the map, which is specified by the feature distributions of ex-
perienced instances. Within the packing model, local com-
petition “tunes” feature importance across causes of the pop-
ulation of categories and creates a smooth space of feature
relevance. SOM also posits a competition among informa-

tion unites but of a fundamentally different kind. In the SOM
algorithm, information coders do not explicitly have “their
own type” of information. Rather it is the topological rela-
tion among information coders that implicitly specifies their
gradients of data distribution. In the SOM learning process,
the closest information units to an input is gradually moved
to better fit the data point, and nearby points are moved to
fit similar inputs. Thus nearby units end up coding similar
inputs.

Topological algorithms such as SOM assume that a
smooth structure is a good way to represent information and
this assumption is well supported by the many successful ap-
plications of these algorithms (Kohonen, 1995). However,
just why a smooth structure is “good” is not well specified.
The packing metric might provide an answer from a psycho-
logical perspective. The packing neither assumes topological
relations nor a smooth structure, but ratherproducesthem
through the joint optimization of discriminability and inclu-
sion. Thus, a smooth space might be a good form of repre-
sentation because of the trade off between discrimination and
generalization.

Packing Theory in relation to other accounts of fast
mapping

Fast Mapping is the term sometimes used to describe
young children’s ability to map a noun to a whole category
given just one instance (Carey & Bartlett, 1978). Packing
Theory shares properties with two classes of current explana-
tions of fast mapping in children: connectionist (Colunga &
Smith, 2005; Roger & McClelland, 2004, see also, Hanson &
Negishi, 2002 for a related model) and Bayesian approaches
(Kemp, Perfors, & Tenenbaum, 2007; Xu & Tenenbaum,
2007). Like connectionist accounts, the packing model views
knowledge about the different organization of different kinds
as emergent and graded. Like rationalist accounts, the pack-
ing model is not a process model. Moreover, since the pack-
ing model is build upon a statistical optimality, it could be
formally classified as a rationalist model (Anderson, 1990).
Despite these differences, there are important similarities
across all three approaches. Both the extant connectionist
and Bayesian accounts of children’s smart noun generaliza-
tions consider category learning and generalization as a form
of statistical inference. Thus, all three classes of models are
sensitive to the feature variability within a set of instances.
All agree on the main idea behind the packing model that
feature variability within categories determines biases in cat-
egory generalization. All three also agree that the most im-
portant issue to be explained is higher order feature selec-
tion, called variously second order generalizations (Smith,
Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002; Col-
unga & Smith, 2005), overhypotheses (Kemp, Perfors, &
Tenenbaum, 2007), and smoothness (the packing model).
Using the terms of Colunga and Smith (2005), the first or-
der of generalization is about individual categories and it is a
generalization over instances. The second order generaliza-
tion is generalization ofdistribution of categoriesover cate-
gories. The central goal of all three approaches is to explain
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how people form higher-order generalizations.
There are also important and related differences among

these approaches. The first set of differences concern
whether or not the different levels are explicitly represented
in the theory. Colunga and Smith’s (2005) connectionist
account represents only input and output associations, the
higher order representations of kind – that shape is more rel-
evant for solid things than for nonsolid things, for example –
areimplicit in the structure of the input-output associations.
They are not explicitly represented and they do not pre-exist
in the learner prior to learning. In contrast, the Bayesian ap-
proach for the novel word generalization (Kemp et al., 2007;
Xu & Tenenbaum, 2007) has assumed categories structured
as a hierarchical tree. The learner knows from the start that
there are higher order and lower order categoriesin a hierar-
chy. Although the packing model is rationalist in approach, it
is emergentist in spirit: Smoothness is not an a priori expec-
tation and is not explicitly represented as higher order vari-
able but is an emergent and graded property of the popula-
tion as a whole. As it stands, the Packing model also makes
no explicit distinction between learned categories at different
levels such as the learning of categories of animal as dog,
for example. The present model is considered only basic
level categories and thus is moot on this point. However,
one approach that the packing metric could take with respect
to this issue is to represent all levels of categories in the same
geometry, with many overlapping instances, letting the joint
optimization of inclusion and discrimination find the stable
solution given the distributional evidence on the inclusion
and discrimination of instances in the overlapping categories.
This approach might well capture some developmental phe-
nomena. For example, children’s tendency to agree that un-
known animals are “animals” but that well known ones (e.g.,
dogs) are not. Within this extended framework, one might
also want to include, outside of the packing model itself ,
real-time processes that perhaps activate a selected map of
categories in working memory or that perhaps contextually
shift local feature gradients, enabling classifiers to flexibly
shift between levels and kinds of categories and to form ad
hoc categories (Barsalou, 1985; Spencer, Perone, Smith, &
Samuelson, in preparation).

The second and perhaps most crucial difference between
packing theory and the other two accounts is the ultimate
origin of the higher order knowledge about kinds. For con-
nectionist accounts, the higher order regularities are latent
structure in the input itself. If natural categories are smooth,
by this view, it is solely because the structure of the cate-
gories in the world is smooth and the human learning system
has the capability to discover that regularity. However, if this
is so, one needs to ask (and answer) why the to-be-learned
categories have the structure that they do. For the current
Bayesian accounts, a hierarchical representational structure
(with variabilized over-hypotheses) is assumed and fixed (but
see the other approach that learns the structure (Kemp &
Tenenbaum, 2008). These over-hypotheses create a tree of
categories in which categories near the tree will have simi-
lar structure. Again, why the system would have evolved to
have such an innate structure is not at all clear. Moreover,

the kind of mechanisms or neural substrates in which such
hierarchical pre-ordained knowledge resides is also far from
obvious.

The packing model provides answers and new insights to
these issues that put smoothness neither in the data nor as
a pre-specified outcome. Instead, smoothness is emergent in
the local interactions of fundamental processes of categoriza-
tion, inclusion, and discrimination. As the proof and analy-
ses show, the joint optimization of discriminability and in-
clusion leads to smooth categories, regardless of the starting
point. The packing model thus provides answer as to why
categories are the way they are and why they are smooth.
The answer isnot that categories have the structure they do
in order to help children learn them; the smoothness of cate-
gories in feature space is not a pre-specification of what the
system has to learn as in the current Bayesian accounts of
children’s early word learning (although the smoothness of
geometry of categories is clearly exploitable). Rather, ac-
cording to Packing Theory, the reason categories have the
structure they do lies in local function of categories, in the
first place: to include known and possible instances but to
discriminate among instances falling in different categories.
The probabilistic nature of inclusion and discrimination, the
frequency distributions of individual categories, the joint op-
timization of discrimination, and inclusion in a connected
geometry of many categories creates a gradient of feature
relevance that is then useable by learners. For natural cat-
egory learning, for categories that are passed on from one
generation to the next, the optimization of inclusion and dis-
crimination over these generations may make highly com-
mon and early-learned categories particularly smooth. Al-
though the packing model is not a process model, processes
of discrimination and inclusion and processes of competition
in a topographical representation are well studied at a variety
of levels of analysis and thus bridges between this analytic
account and process accounts seem plausible.

Testable Predictions

The specific contribution of this paper is a mathematical
analysis that shows that the joint optimization of inclusion
and discrimination yields a smooth space of categories and
that given such a smooth space that optimization can also ac-
curately predict the instance distributions of a new category
specified only by the location of a single instance. What is
needed beyond this mathematical proof is empirical evidence
that shows that the category organizations and processes pro-
posed by the packing model are actually observable in human
behavior. The present paper provide a first step by indicat-
ing that the feature space of early-learned noun categories
may be smooth (and smooth enough to support fast map-
ping). Huttenlocher et al (2007) have reported empirical
evidence that also provides support for local competitions
among neighboring categories. Huttenlocher et al’s (2007)
method provides a possible way to test specific predictions
from Packing Theory in adults.

The local interactions that create smoothness also raise
new and testable hypotheses about children’s developing cat-
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egory knowledge. Because these local competitions depend
on the frequency distributions over known instances and the
local neighborhood of known categories, there should be
observable and predictable changes as children’s category
knowledge “scales up”. Several developmental predictions
follow: (1) Learners who know (or are taught) a sufficiently
large and dense set of categories, should form and general-
ize a geometry of categories that is smoother than that given
by the known instances. (2) The generalization of any cat-
egory trained with a specific set of instances should depend
on the instance distributions of surrounding categories and
be distorted in the direction of the surrounding categories;
thus, children should show smoother category structure and
smarter novel noun generalizations in denser category re-
gions than sparser ones. (3) The effects of learning a new
category on surrounding categories or surrounding on new
categories should depend in formally predictable ways on the
feature distributions of those categories.

Conclusion

Categories (and their instances) do not exist in isolation
but reside in a space of many other categories. The local in-
teractions of these categories create a gradient of higher or-
der structure - different kinds with different feature distribu-
tions. This structure emergent from the interactions of many
categories in a representational space constrains the possible
structure of both known and unknown categories. Packing
Theory captures these ideas in the joint optimization of dis-
crimination and generalization.
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Appendix: Derivation of
differential with respect to

covariance matrix

We derive Equation (11) and (12) by expanding∂Fi j

∂σi
and

∂Gik

∂σi
. For the derivation, we use the vectorizing operator v(X)

which form a column vector from a given matrixX (See also
Magnus & Neudecker, 1988; Turkington, 2002 for the ma-
trix algebra). A useful formula on vectorizing operator is as
follows. ForA: m× n matrix andB: n× p matrix,

v(AB) = v(ImAB) =
(
BT ⊗ Im

)
v(A)

= v(AImB) =
(
BT ⊗ A

)
v(Im)

= v(ABIp) =
(
Ip ⊗ A

)
v(B)

where Im is m-th order identity matrix and⊗ denotes Kro-
necker product. Moreover, we use the following formulae in
order to expand the differential with respect to a matrix (See

also Turkington, 2002). Ford × d matricesX, Y, Z and a
constant matrixA which is not function ofX,

partial|X|
∂v(X)

= |X|v(X−1T)

∂v(X−1)
∂v(X)

= −
(
X−1 ⊗ X−1T

)
∂tr(AX)
∂v(X)

= v(AT)

∂v(X)
∂xk

= (λkId − X)
(
xT

k ⊗ Id

)
∂v(Z)
∂v(X)

=
∂v(Y)
∂v(Z)

∂v(X)
∂v(Y)

wherexk andλk are respectively k-th eigenvector and eigen-
value of ad-th order real symmetric matrixX. We derive
Equation (11) from Equation (8) using formulae above,

−4∂Fi j

∂v(σi)
=
∂v(∆µi j∆µ

T
i j σ̄
−1
i j )

∂v(σi)
+ 2
∂ log

∣∣∣2−1σ̄i j

∣∣∣
∂v(σi)

− ∂ log |σi |
∂v(σi)

=
∂v(σ̄−1

i j )

∂v(σi)
v
(
∆µi j∆µ

T
i j

)
+ 2
∂v(σi)
∂v(σi)

v
(
σ̄−1

i j

)
− ∂v(σi)
∂v(σi)
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i )
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(
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v
(
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T
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− v(σ−1T
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T
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i (µi − µ̄i j )(µi − µ̄i j )
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whereσ̄i j = σi + σ j and∆µi j = µi − µ j . And note that
σ̄i j = σ

−1
i − 2−1σ−1

i σ̂i jσ
−1
i andσ̄i j∆µi j = σ

−1
i σ

−1
i (µi − µ̄i j )

are used for the last line. Thus, we obtain Equation (11).
Likewise the derivation of Equation (11), we derive Equation
(12) from Equation (2) as follows.
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)
Next, we derive Equation (13) using formula for the dif-

ferential with respect to eigenvector as follows.

∂LN

∂sil
=
∂v(σi)
∂sil
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T
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(
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sT

il

Since|ηil ID − σi | = 0 is obvious by definition,
∣∣∣∣ ∂LN

∂σi

∣∣∣∣ = 0 is

necessary in order to obtain non-obvious solution for∂LN

∂sil
=

0. Therefore, we obtain Equation (13).



16 HIDAKA AND SMITH

References

Anderson, J. R. (1990).The adaptive character of thought. Hills-
dale, NJ: Lawrence Erlbaum Associates.

Ashby, G. F., & Townsend, J. T. (1986). Varieties of perceptual
independence.Psychological Review, 93, 154-179.

Barsalou, L. W. (1985). Ideals, central tendency, and frequency of
instantiation as determinants of graded structure in categories.
Journal of experimental psychology. Learning, memory, and
cognition, 11, 629-654.

Beck, D. M., & Kastner, S. (2009). Top-down and bottom-up
mechanisms in biasing competition in the human brain.Vision
Research, 49, 1154–1165.

Booth, A. E., & Waxman, S. (2002). Word learning is ’smart’:
Evidence that conceptual information affects preschoolers’ ex-
tension of novel words.Cognition, 84, B11-B22.

Carey, S., & Bartlett, E. (1978). Acquiring a single new word.
Papers and reports on child language development, 15, 17-29.

Colunga, E., & Smith, L. (2005). From the lexicon to expecta-
tions about kinds: A role for associative learning.Psychological
Review, 112, 347-382.

Colunga, E., & Smith, L. B. (2008). Flexibility and variability:
Essential to human cognition and the study of human cognition.
New Ideas in Psychology, 26(2), 174-192.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum
likelihood from incomplete data via the em algorithm.Journal
of Royal Statistical Society Series B, 39, 1-38.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000).Pattern classifica-
tion (2nd ed.). New York: John Wiley & Sons.

Duncan, J. (1996). Cooperating brain systems in selective percep-
tion and action. Attention and performance XVI: information
integration, 18, 193–222.

Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., &
Pethick, S. J. (1994). Variability in early communicative devel-
opment.Monogr. Soc. Res. Child Dev., 59, 1–173.

Gathercole, V. C. M., & Min, H. (1997). Word meaning biases or
language-specific effects? evidence from english, spanish, and
korean.First Language, 17(49), 31-56.

Gelman, S. A., & Coley, J. D. (1991). Perspectives on language
and thought: Interrelations in development. In S. A. German
& J. P. Byrnes (Eds.), (chap. Language and categorization: the
acquisition of natural kind terms). Cambridge: Cambridge Uni-
versity Press.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics
in semantic representation.Psychological Review, 114, 2.

Hanson, S. J., & Negishi, M. (2002). On the emergence of rules in
neural networks.Neural computation, 14, 2245–2268.

Hidaka, S., & Saiki, J. (2004). A mechanism of ontological bound-
ary shifting. InThe twenty sixth annual meeting of the cognitive
science society(p. 565-570).

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R.
(1986). Induction. Cambridge, MA: MIT Press.

Huttenlocher, J., Hedges, L. V., Lourenco, S. F., Crawford, L. E., &
Corrigan, B. (2007). Estimating stimuli from contrasting cate-
gories: Truncation due to boundaries.Journal of Experimental
Psychology: General, 136(3), 502-519.

Imai, M., & Gentner, D. (1997). A cross-linguistic study of early
word meaning: universal ontology and linguistic influence.Cog-
nition, 62, 169–200.

Jones, S. S., & Smith, L. (2002). How children know the rele-
vant properties for generalizing object names.Developmental
Science, 5, 219–232.

Jones, S. S., Smith, L. B., & Landau, B. (1991). Object properties

and knowledge in early lexical learning.Child development, 62,
499-516.

Keil, F. C. (1994). Mapping the mind: Domain specificity in cog-
nition and culture. In L. A. Hirschfeld & S. A. Susan A Gelman
(Eds.), (chap. The birth and nurturance of concepts by domains:
The origins of concepts of living things). MA: Cambridge Uni-
versity Press.

Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning over-
hypotheses with hierarchical bayesian models.Developmental
Science, 10(3), 307-321.

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of struc-
tural form. Proceedings of the National Academy of Sciences,
105(31), 10687-10692.

Kloos, H., & Sloutsky, V. M. (2008). What’s behind different kinds
of kinds: Effects of statistical density on learning and represen-
tation of categories.Journal of Experimental Psychology: Gen-
eral, 137, 52-75.

Kobayashi, H. (1998). How 2-year-old children learn novel part
names of unfamiliar objects.Cognition, 68, B41-B51.

Kohonen, T. (1995).Self-organizing maps. Heidelberg: Springer.
Landau, B., Smith, L. B., & Jones, S. (1992, Dec). Syntactic con-

text and the shape bias in children’s and adults’ lexical learning.
Journal of Memory and Language, 31(6), 807-825.

Landau, B., Smith, L. B., & Jones, S. S. (1998). Object shape,
object function, and object name.Journal of Memory and Lan-
guage, 38, 1-27.

Macario, J. F. (1991). Young children’s use of color in classifica-
tion: Foods and canonically colored objects.Cognitive Devel-
opment, 6, 17-46.

Magnus, J. R. (1988).Linear structure. Oxford: Oxford University
Press.

Markman, E. M. (1989).Categorization and naming in children:
Problems of induction. Cambridge, MA: MIT Press.

Marslen-Wilson, W. D. (1987). Functional parallelism in spoken
word-recognition.Cognition, 25, 71–102.

McCullagh, P., & Nelder, J. A. (1989).Generalized linear models
(2nd ed.). Chapman & Hall.

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005).
Semantic feature production norms for a large set of living and
nonliving things. Behavior Reserch Methods, Instruments,&
Computers, 37, 547-559.

Murphy, G., & Medin, D. L. (1985). The role of theories in con-
ceptual coherence.Psychological Review, 92, 289-316.

Nisbett, R., Krantz, D., Jepson, C., & Kunda, Z. (1983). The use
of statistical heuristics in everyday inductive reasoning.Psycho-
logical Review, 90, 339-363.

Nosofsky, R. M. (1986). Attention, similarity and the identification-
categorization relationship.Journal of Experimental Psychol-
ogy: Learning Memory, and Cognitition, 15, 39-57.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-
plus-exception model of classification learning.Psychological
Review, 101, 53-79.

Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957).The mea-
surement of meaning. Urbana, IL: University of Illinois Press.

Rips, L. J. (1989). Similarity, typicality, and categorization. In
S. Vosniadou & A. Ortony (Eds.),Similarity and analogical rea-
soning.Cambridge, England: Cambridge University Press.

Rips, L. J., & Collins, A. (1993). Categories and resemblance.
Journal of Experimental Psychology: General, 122, 468-486.

Rogers, T. T., & McClelland, J. M. (2004).Semantic cognition: A
parallel distributed processing approach. Cambridge, MA: The
MIT Press.

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-



PACKING: A GEOMETRIC ANALYSIS OF CATEGORIES 17

Braem, P. (1976). Basic objects in natural categories.Cognitive
Psychology, 8, 382-439.

Samuelson, L. K., & Smith, L. B. (1999). Early noun vocabularies:
do ontology, category structure and syntax correspond?Cogni-
tion, 73, 1–33.

Shepard, R. N. (1958). Stimulus and response generalization: Tests
of a model relating generalization to distance in psychological
space.Journal of Experimental Psychology, 55, 509-523.

Smith, L. B., Jones, S. S., Landau, B., Gershkoff-Stowe, L., &
Samuelson, L. (2002). Object name learning provides on-the-
job training for attention.Psychological Science, 13, 13–19.

Soja, N. N., Carey, S., & Spelke, E. S. (1991). Ontological cate-
gories guide young children’s inductions of word meanings: ob-
ject terms and substance terms.Cognition, 38, 179–211.

Spencer, J. P., Perone, S., Smith, L. B., & Samuelson, L. (in prepa-
ration). Non-bayesian noun generalization from a capacity-
limited system.Manuscript in preparation.

Stewart, N., & Chater, N. (2002). The effect of category variability
in perceptual categorization.Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 28, 893-907.

Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale struc-
ture of semantic networks: Statistical analyses and a model of
semantic growth.Cognitive Science, 29, 41-78.

Swingley, D., & Aslin, R. N. (2007). Lexical competition in young
children’s word learning.Cognitive Psychology, 54, 99-132.

Tenenbaum, J. B., Silva V. de, & Langford, J. C. (2000). A global
geometric framework for nonlinear dimensionality reduction.
Science, 290, 2319-2323.

Thibaut, J. P., Dupont, M., & Anselme, P. (2002). Dissociations
between categorization and similarity judgments as a result of
learning feature distributions.Memory& Cognition, 30(4), 647-
656.

Tisseur, F., & Meerbergen, K. (2001). The quadratic eigenvalue
roblem.SIAM Review, 43(2), 235-286.

Turkington, D. A. (2002). Matrix calculus and zero-one matri-
ces: Statistical and econometric applications. Cambridge, MA:
Cambridge University Press.

Tversky, A., & Hutchinson, J. W. (1986). Nearest neighbor analysis
of psychological spaces.Psychological Review, 93, 3-22.

Xu, F., & Tenenbaum, J. (2007). Word learning as bayesian infer-
ence.Psychological Review, 114, 245-272.

Yoshida, H., & Smith, L. B. (2001). Early noun lexicons in english
and japanese.Cognition, 82, 63–74.

Yoshida, H., & Smith, L. B. (2003). Shifting ontological bound-
aries: how japanese- and english- speaking children generalize
names for animals and artifacts.Developmental Science, 6, 1–
34.

Zeigenfuse, M. D., & Lee, M. D. (2009). Finding the features that
represent stimuli.Acta Psychologica, 133, 283-295.


