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This paper presents a geometrical analysis of how local interactions in a large population of
categories packed into a feature space create a global structure of feature relevance. The theory
is a formal proof that the joint optimization of discrimination and inclusion creates a smooth
space of categories such that near categories in the similarity space have similar generalization
gradients. Packing theonyfters a unified account of several phenomena in human categoriza-
tion including the diferential importance of flierent features for élierent kinds of categories,

the dissociation between judgments of similarity and judgments of category membership, and
children’s ability to generalize a category from very few examples.

There are an infinite number of objectively correct de-sults: (1) experiments and theoretical analyses showing that
scriptions of the features characteristic of any thing. Thusthe distribution of instances in a feature space is critical to
Murphy and Medin (1985) argue that the key problem forthe weighting of those features in adult category judgments
any theory of categories is feature selection: picking out theand (2) evidence from young children’s category judgments
relevant set of features for forming a category and generalizthat near categories in the feature space are generalized in
ing to new instances. The feature selection problem is particsimilar ways. Distributions of instances In a seminal paper,
ularly difficult because considerable research on human caRips (1989) reported that judgments of instance similarity to
egories indicates that the features people think are relevaiat category and judgments of the likelihood that the instance
depend on the kind of category (Murphy & Medin, 1985; is a member of the category did not align. The result, now
Macario, 1991; Samuelson & Smith, 1999). For examplereplicated many times, shows that people take into account
color is relevant to food but not to artifacts; material (e.g.,how broadly known instances vary on patrticular properties
wood versus plastic) is relevant to substance categories b(iKloos & Sloutsky, 2008; Zeigenfuse & Lee, 2009; Rips &
not typically to artifact categories. This leads to a circu-Collins, 1993; Holland, Holyoak, Nisbett, & Thagard, 1986;
larity as pointed out by Murphy and Medin; to know that Nisbett, Krantz, Jepson, & Kunda, 1983; Thibaut, Dupont,
something is a pea, for example, one needs to attend to i& Anselme, 2002) With respect to judgments of the likeli-
color, but to know that one should attend to its color, onehood that an instance was a member of the category, people
has to know it is a potential pea. Children as young as twdake into account the frequency of features across known in-
and three years of age seem to already know this and explastances and do not just judge the likelihood of membership
these regularities when forming new categories (Colunga &n the category by similarity across all features. Importantly,
Smith, 2005; Yoshida & Smith, 2003). This paper presentdhowever, similarity judgments in Rips’ study were not influ-

a new analysis of feature selection based on the idea that irnced by the frequency distribution of features across cate-
dividual categories reside in a larger geometry of other catgory instances (see also, Rips and Collins, 1993; Holland et
egories. Nearby categories through processes of generalizal, 1986; Nisbett et al., 1983; Thibaut et al., 2002, Stewart
tion and discrimination compete and these local interaction& Carter, 2002). Rather, the similarity relations of poten-
set up a gradient of feature relevance such that categories thl instances to each other and the importance of features to
are near to each other in the feature space have similar feasdgments of the likelihood of category membership appear
ture distributions over their instances. We call this proposato be separable sources of information about category struc-
"packing theory” because the joint optimization of general-ture with the distribution of features across known instances
ization and discrimination yields a space of categories thatost critical in determining the importance of features in de-
is like a suitcase of well-packed clothes folded into the rightcisions about category membership. Figure 1 provides an il-
shapes so that they fit tightly together. The proposal, in théustration. The figure shows the feature distribution on some
form of a mathematical proof, draws on two empirical re- continuous dimension for two categories, A and B. A feature
that is highly frequent and varies little within a category is
more defining of category membership than one that is less
] ] . ] _ frequent and varies more broadly. Thus, a novel instance that
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2001; Markman, 1989; Booth and Waxman, 2002; Gather-
: | cole & Min, 1997; Imai & Gentner, 1997; Landau, Smith &
Optimal boundary Jones, 1988, 1992, 1998; Soja, Carey, & Spelke, 1991; see
""""" Mean ] also, Gelman & Coley, 1991; Keil, 1994).
<l Discrimination error Critically, the features that cue these categories - hav-
1 ing eyes or legs, being angular or rounded, being solid or
nonsolid - may be treated as continuous rather than as dis-
il crete and categorical features. When the degree to which in-
stances present these features is systematically varied so that
named exemplars are more or less animal-like or more or
less artifact-like (Yoshida & Smith, 2003; Colunga & Smith,
2005, 2008) children show graded generalization patterns:
. Exemplars with similar features are generalized in similar
ways and there is a graded, smooth, shift in the patterns of
1 ) generalizations across the feature space. Based on an anal-
Feature space é ysis of the structure of early learned nouns, Colunga and
Figure 1 Likelihoods of instances in two categories, A and B, in Smith (Colunga & Smith, 2005, 2008; Samuelson & Smith,
a hypothetical feature space. The solid line shows the optimal det999) proposed that children’s generalizations reflected the
cision boundary between category A and B. The broken line showgnstance distributions of early learned nouns that categories
mean value of the instances in the feature space for each categongf the same general kind (artifacts versus animals versus
substances) typically have many overlapping features and
also have similar dimensions as the basis for including in-
stances and discriminating membership in nearby categories.
This is because the likelihood of that feature given categoryn brief, categories of the same kind will be similar to each
B is greater than the likelihood of the feature given categonpther, located near each other in some larger feature geome-
A. This can also be conceptualized in terms of this featurary of categories, and have similar patterns of instance distri-
having greater importance to category A than B. butions. This has potentially powerful consequences: If fea-
The potentially separate contributions of similarity and theture importance is similar for nearby categories, then the lo-
category likelihoods of features provide a foundation for thecation of categories -or even one instance — within that larger
present theory. Similarity is a reflection of the proximity of space of categories could indicate the relevant features for
instances and categories in the feature space. The densiigtermining category membership. Thus, children’s system-
of instances in this feature space result in local distortionsitic novel noun generalizations may reflect the distribution
of feature importance in the space, a result of competitiongf features for nearby known categories.
among nearby categories. The result is a patchwork of local The findings in the literature on children’s generalizations
distortions that set up a global gradient of feature importanc@om a single instance of a category may be summarized
that constrains and promotes certain category organizationgith respect to Figure 2. The cube represents some large
over others as a function of location in the global geometryhyperspace of categories on many dimensions and features.
Further, in this view, the weighting of featuredagally dis-  Within that space we know from previous studies of adult
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torted, but similarity is not. judgments of category structure and from children’s noun
generalizations (Soja, Carey, & Spelke, 1991; Samuelson &
Nearby categories Smith, 1999; Colunga & Smith, 2005) that solid, rigid and

constructed things, things like chairs and tables and shov-
Studies of young children’s novel noun generalizationsels) are in categories in which instances tend to be similar in
also suggest that the proximity of categories to each other ishape but dferent in other properties. This category gener-
a feature space influence category formation. These resultdization pattern is represented by the ellipses in the bottom
derive from laboratory studies of how 2- and 3- year oldsleft corner; these are narrow in one direction (constrained in
generalize a category to new instances given a single exentleir shape variability) but broad in other directions (varying
plar. In these experiments, children are given a novel nevemore broadly in other properties such as color or texture).
seen-before thing, told its name (“This is a dax”) and askedVe also know from previous studies of adult judgments of
what other things have that name. The results show that chikategory structure and from children’s novel noun general-
dren extend the names for things with features typical of anizations (Soja et al., 1991; Samuelson & Smith, 1999; Col-
imates (e.g., eyes) by multiple similarities, for things with unga & Smith, 2005), that nonsolid, nonrigid things with ac-
features typical of artifacts by shape (e.g., solid and angulacidental shapes (things like sand, powder, and water) tend
shapes), and for things with features typical of substances by be in categories well organized by material. This cate-
material (e.g., nonsolid, rounded flat shape). The childrergory generalization pattern is represented by the ellipses in
systematically extend the name to new instances figrént  the upper right corner of the hyperspace; these are broad in
features for dferent kinds (Jones, Smith & Landau, 1991; one direction (wide variation in shape) but narrow in other
Kobayashi, 1998; Jones & Smith, 2002; Yoshida & Smith,directions (constrained in material and texture). Finally, Col-
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unga and Smith (2005; 2008) found evidence for a gradientve assume that at the probabilistic edges of categories, there
of generalization patterns within one local region of featureis competition among categories for instances. Competition
space of early-learned noun categories. In sum, the eviden@haracterizes representational processes at the cognitive, sen-
suggests that near categories (with similar instances) hawory, motor, cortical and subcortical levels. In general, ac-
similar generalization patterns and far categories (with distivation of a representation of some property, event or ob-
similar instances) have dissimilar generalization patterns. jectis at the expense of other complementary representations
At present Figure 2 represents a theoretical conjecturgPuncan, 1996; Beck & Kastner, 2009; Marslen-Wilson,
one based on empirical evidence about one small region df987; Swingley & Aslin, 2007). Packing theory proposes
the space of human categories and one that has not be&mt near by categories have similarly shaped generalizations
theoretically analyzed. Still, it is a particularly interesting patterns because of the joint optimization of including nearby
conjecture in the context of Rips’ (1989) insight that the dis-instances and discriminating instances associated wtdrdi
tributions of features are distinct from similarity and deter-ent categories. Third, the present approach assumes some
mine the relative importance of features in category judgfeature-based representation of categories (McRae, Cree,
ment. Packing theory builds on these two ideas: distributionSeidenberg, & McNorgan, 2005). However, we make no as-
of instances and proximity of categories in the feature spaceumptions about the specific nature of these features or these
to suggest how they jointly determine feature selection. origins. Although we will use perceptual features in ours dis-
cussions and simulations, the relevant features could be per-
Nonsolid ceptual, functional or conceptual. Packing Theory is a gen-
nonrigid, eral theory, about any distribution of many instances in many
Acdidental shape categories across any set of features and dimensions. More-
T over, the theory does not need the right pre-specification of
the set of features and dimensions. Optimization within the
— theory depends only on distance relations in the space (and
thus on the number of orthogonal, that is uncorrelated, di-
mensions but not on any assumptions about what orthogonal
directions in that space constitute the dimensions). Further,
the predictions are general; along any direction in that space
(a direction that might consist of joint changes in two psy-
chological dimensions, angularity and rigidity, for example),
one should see near categories having more similar gener-
alization patterns and far categories having morféedint
Solid, generalization patterns. To present the theory, we will of-
rigid, ten use figures illustrating instance and category relations in

constructed shape

Figure 2 A hyperspace of categories. The ellipses represent caté? tWO'd',mens'Onal space; however, the formal thepry as pre-
gories with particular. generalization patterns (constrained in som&€nted in the proof -and the conceptual assumptions behind
directions but allowing variability in others). Packing Theory pre- it -assume a high dimensional space.
dicts that near categories in the space will have similar generaliza-
tion patterns and.tha.t there should be a §mooth gradllent. of changing packing Theory
category generalizations as one moves in any direction in the space.
Past research shqws that categories of sol!d, rigid and _constru_ct_ed Geometry is principally about how one determines neigh-
g‘égg;c‘z‘irgegnigﬁﬂ';:Se%ﬁir;]‘;psea?gtgce""ri?;?z?do;;%r;stglr'%l ”ggglgi'%ors. If the structure of neighboring categories determines
Theory predicts a graded transition in feature space between the@%ature SeIeCtIOI_’l, then a geomemqal analysis should enhance
two kinds of category organizations. our un.derstan(_:hng of why_ categories have the structure they
do. Figure 2 is the starting conjecture for the theory pre-
sented here and it suggests that near categories have similar
instance distributions whereas as far categories have more
Starting Assumptions dissimilar instance distributions. Thus, a geometry is needed
when it represents both local distortions and the more global
Three theoretical assumptions form the backdrop forstructure that emerges from a space of such local distor-
Packing Theory. First, as in many contemporary theoriesions. Many theorists of categorization have suggested that
of categorization, we take an exemplar approach (Nosofskyalthough Euclidean assumptions work well within small and
1986; Ashby & Townsend, 1986; Nosofsky, Palmeri, & local stimulus spaces, a Riemann (or non-Euclidian) geom-
McKinley, 1994). We assume that noun categories begiretry is better for characterizing the local and global struc-
with mappings between names and specific instances witture of large systems of categories (Tversky & Hutchinson,
generalization to new instances by some weighted functiod986; Grifiths, Steyvers, & Tenenbaum, 2007; Steyvers &
of feature similarity. Packing is about those weighted fea-Tenenbaum, 2005). Packing Theory follows this lead. We
tures. This means that categories do not have fixed or ruldirst present a conceptual understanding of the main idea that
like boundaries but rather probabilistic boundaries. Secondyacking categories into a space creates a smooth structure
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and then the formal proof. Packing Theory proposes that a smooth space of cate-
) gories results from the optimization with respect to two con-
Well-Packed Categories straints: minimizing gaps and minimizing overlap. These

constraints are understood in terms of the joint optimization
of including all experienced and potential instances in a cat-
egory and discriminating instances of nearby categories. The

like that of young children; near categories have similar pat_}ﬁclusmn-d|scr|m|nat|on problem is illustrated with respect

A . ; to the simple case of two categories in Figure 4. Each cate-
terns of feature distributions and far categories hafferint ory has a distribution of experienced instances indicated by
ones. Such a geometry is not logically necessary (though

may be psychologically likely). One could have a geome- e diamonds and the crosses. We assume that the learner
y psychologically lIKely). 9 can be more certain about the category membership of some
try of categories like that in Figure 3b, where each categor

; L . Y¥nstances than others can; that is, the probability that each
has its own organization unrelated to those of near nelghb_orgf these instances is in the category varies. If a category is
and more specifically, a geometry in which near categorleﬁ X

do not share similar feature imoortance. The tWo Spaces onsidered alone, it might be described in terms of its cen-
> g P : VO Sp Qfal tendency and estimated category distribution of instances
categories illustrated in Figure 3a and 3b are alike in that i

both of these spaces there is little category overlap. That i or covariance of the features over the instances). The solid
in both of these spaces, the categories discriminafe amoni’nes that |nd|catg the confidence intervals around each cat-
instances. However thé categories in 3b are not smooth ingory |Ilustratg this. _However, the Iea}rner needs to consider
that near .categories, haveffdrent shapes. Moreover, this fhstances not just with respect to a single category, but also

' ' with respect to nearby categories. Therefore, such a learner

structure I.ead.s t0 gaps in the space, possible instances (fer%'ight decrease the weight of influence of any instance on
ture combinations) that do not belong to any known category;

The categories in Figure 3b could be pushed close togeth trr1e estimated category structure by a measure of its confus-
to Iessengthe a0S Igowever iven thel.?nonsmooth strl?ctur%bi”ty between the categories. This is plausible because the
gaps. 9 Shared instances in between these nearby categories are less

there would always be some gaps, unless the categories aFﬁ‘ormative as exemplars of categories than the other non-

pushed so close that they ove_rlap as in Figure 3c. Figure gonfusing instances. Thus, the estimation of category struc-
then shows a space of categories with no gaps, but also one flire may “discount” the instances in between the two cate-

which individual categories do not discriminate well among ories. Doing this results in an estimated category distribu-

instances. The main point is that if neighboring categorie jon, that is shifted such that the generalization patterns for

hz_a\(]e diferent ghlapes there will eithe(;_be gaphs in the SPaCthe two categories are more aligned and more similar, which
with no potential category corresponding to those instance, . . g : L
or there will be overlapping instances. A smooth space o hesgr(;wn with dotted lines. This is the core idea of packing

categories, a space in which nearby categories have similar
shapes, can be packed in tighter. This is a geometry in which
categories include and discriminate among all potential in-

Figure 3 shows three fierent sets of categories

stances. s
e S——~. |7 N T 2F ]
= o
= OYORAD o
—=z [ O 5
@ O e = £ of ]
/ @ =
(a) Smooth categories (b) Categories with gaps = -1 q
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Dimension 1
Figure 4 Two categories and their instances on two-dimensional
feature space. The dots and crosses show the respective instances
Figure 3. A cartoon of populations of categories in a feature spaceof the two categories. The broken and solid ellipses indicate equal-
illustrating three dierent ways those might categories might fit into likelihood contours with and without consideration to category dis-
the space. Each ellipsis indicates equal-likelihood contour of cateerimination respectively.
gory. The broken enclosure indicates the space of instances to be
categorized.
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Formulation of the Theory This is the formal definition of the likelihoods of instances
with respect to individual categories, which we call inclu-

f It 'S(‘j [)elatllvely dfﬁCLt’)lt tofdetscrlbg thehwh(::]e sltructlrr_e sion. In this formulation, the mean vectqiisahd covariance
ormed by a large number of categories when they foca y'n'matrices(r”i (i = 1,2,..,N), maximize the log-likelihood

teract across all categories at onbecategories hav&(- (likelihood) as follows:

possible pairs of categories. Moving one category to maxi-

mize its distance from some other category may influence the

other N — 1) categories, and those other categories’ move- R 1K

ments will have secondaryffects (even on the first one), M= Z Xk (4)
and so forth. Thus, two categories that compete with each k=1

other in a local region in a feature spanéiuence the whole 1%

structure by chains of category interactiorithe goal of the i = K Z(Xk — )% — )’ (5)
theory formulation is to describe the dynamics of category k=1

inclusion and discrimination in a general case, and to speci
a stable optimal state for thé-categories case. Mathemati-
cally, the framework can be classified in one of variant of a’
broad sense of the Linear Discriminant Analysis (LDA, seenyicrriminati

Duda, Hart, & Stork, 2000) , although we do not necessarinDISC“mInatlon

limit the theory to employ only linear transformation or as-  Consider the simple case with two categories in a one-
sume homoscedastic category distributions (See also, Ashliimensional feature space as in the example from Rips
& Townsend, 1986 for the similar formulation using normal (1989) in Figure 1. Likelihoods of category A and B are

S
|

f}i'hese maximum likelihood estimates are simply the mean
ectors and covariance matrices of all instances of a category.

distribution in psychological field) . shown as the solid lines: category A has the central ten-
. dency on the left side in which the instance is most likely,
Inclusion and category B has the central tendency on the right side. An

optimal category judgment for a given instance is to judge

We begin with a standard formalization of the distribu- it as belonaing to th ¢ likel ‘ Thus th i
tion of instances in a category as a multidimensional normall 25 P€longing fo the most ikély category. us the opti-

distribution; that is, the conditional probabilistic density of ?alhsc:jhf_tlon. 'SFt.O JUd%et aB |nstant(:e on t:e l%ft fr']de qf thte
an instance having featusegiven category; is assumed to ashed lin€ in Figure 1 to be in category A and otherwise to

follow a multi-dimensional normal distribution: judg_e it.to _be i_n category B._Mea_nwhile, th(_a error probability
of discrimination in the optimal judgment is the sum of the

non-maximum category likelihood, the shaded region in Fig-
-1 1 _ ure 1. Therefore, we formally define discriminability as the
P(6lci) = {(2”)2 |‘Ti|} exp[—i(e — ) o (O _“i)} (1) probability of discriminating error in this optimal category
judgment.
wherey; ando; are respectively mean vector and covariance = Although the minimum or maximum function isfilcult
matrix of the features that characterize the instances of cate solve, we can obtain the upper bound of the discriminating
egoryc;. The superscript “T” indicates transposition of the error (log-likelihood)F;; for categoryci andc; as follows:
matrix. We identify the central tendency and distribution pat-
tern of these features as the mean vector of the category, and -3
the covariance matrix respectively. The motivation of this Fij = log [ fg {P(Glci)P(0|cJ—)} ] ®)
formulation of category generalization derives from Shepard
(1958) characterization of the generalization gradient as atn particular, when likelihoods of categories are normally
exponential decay function of given psychological distance.distributed, it is called the Bhattecheryya bound (Duda, Hart,
When we have; instancesk = 1, 2, ...,K;) for category & Stork, 2000). In fact, the non-maximum likelihood of
¢ , the log-likelihoodG; that these instances come from cat-a given pair is the classification (instance, category) error

egoryg; is the joint probability of all instances rate and the non-maximum likelihood has the following up-
per bound: minR(dic;), P(dic;)) < P(blci)*P(bicj)*~* where
K Ki 0 < a < 1. Thus, Equation 6 is the upper bound of er-
Gi = log I_[ P(xdci)P(c) p = ZGik (2)  ror in the optimal classification witkx = . The term
k=1 k=1 P(6Ic)*P(6ic;) is the function ofe, and a particula
whereGy, = log {P(x/c)P(c))}. may allow the tightest upper bound with a general case of

Note that logk) is a monotonic function for alk > 0.  (Equation 6 is called the Cherfidound). Here, we assume
Thus we can identify a solution of that maximizes the « = 3 for simplification of formulation.
log-likelihood. For all categoried (= 1,2, ...,N), the log-
likelihood isG = YN, Gi. 1
Fij = _Z(/li — 1) (o + o) i — pg) (1)

N K
= )P(C 1, 1 1
G_;;mgwmmpm)} ©) - E|og(§(o—iﬂu(f,»)'ﬁuZlog(|m||o—j|) ®)
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The first term & — u;)7 (o7 + o) "X(ui — ;) indicates the  egories to instanceRy = ——@PXdS) ___ cajculated in the

: - - 2, Sy P@)POC)’
distance between mean vectors of the categories weighteg; . ving derivation. Note thaP(xc) is a given binary con-
by their covariance matrices, which is zero whegn =

And th d and third 11002 stant variable, either one or zero, in case of supervised learn-

#j- And the second and third terms3 log |3 (i + oj)| + ing, and it should be estimated from its likelihood in case of

%log(|oil||), indicate the distance between the covari-unsupervised learning.

ance matrices of categories which is zero when= o ;.

Thus, obviously the discrimination error is maximized whenQptimal solutions for covariance matrices

ui = pj andoy = o, when categoryg; andc; are iden-

tical. Meanwhile the discriminating error is minimized  Consider the case in which the mean of a category, but

when the distance between two (%entral tendencies or disiot its covariance, is specified. Packing Theory assumes a

tributions goes to infinity(,ui _,uj) (ﬂi _Hj) — o or covariance for that category derives from the optimization of
T . discrimination and inclusion with respect to the known cate-

tr [(Ni — ) (i —,Uj)] — oo where trX] is trace of the ma-  gories. This is formally given as the solution of the optimal

trix X. The minimum and maximum concern is the one com-covariance of an unknown category when the mean of the

ponent of discrimination. category and the set of means and covariances of the other
_ ) known categories are given. Thus, in that case, we solve
The packing metric the diferential of the packing metric with respect to the co-

he ioi Lo ¢ discriminati ing th variance matrix. We next derive thesdtdrentials to show
_The joint optimization of discrimination by reducing the ,5; these optimal solutions imply a smooth organization of
discriminating error and the optimization of the inclusion of categories in general. As a preview, the following deriva-

instances with respect to the likelihood of known instances;qns’show that a solution that optimizes discrimination and
results in a solution that is constrained to an inter region bejnclusion implies a particular pattern of organization, that of
twee'n these twg extremes. In the gengral_(i?se _W'@t' smooth categories, that emerges out of chains of local cate-
egories, we define the sum of all possib¥2 pairs (in-  gory interactions. In addition, the form of the optimal solu-
cluding symmetric terms) of discriminating error as discrim-tjon also suggests how known categories constrain the for-
inability. mation of new categories.

The diferential of the functions of likelihoods and dis-

N N
1 1 criminability with respect to covariance matuix is,
F=log|» > P(c)?P(c))? expFij) 9) Y P "
=1 =1 oF; 1
J -1 T -
— = ——0; i — i — + 0ij — O 11

More formally, we obtain a set of optimal solutions by de- Joij 4! {('u' i = H) N '} (D
riving the diferential of Equation 3 (inclusion) and Equation
8 (discrimination). Since the desired organization of catewhere &ij = 20i(oi + oj) o and pij = %&ij(o'i_lﬂi +

gories should maximize both discriminability and inclusion o) o, and

simultaneously, we define the packing metric function as a '

weigh'geq summation of Equation (3) and Equation (8) with G 1

a multiplier : 6—' = —501_1 (i =)@ = )" —orifoi® (12)
L=G+A(F-C) (10) 7

whereC is a particular constant, which indicates a level for. See Appendix for the detailed derivation of Equation (11)
discriminability F to satisfy. According to the Lagrange and (12). Since a covariance matrix must be a positive def-
multiplier method, the dierential of parameter% = 0 inite, we parameterize the covariance matrixusing itsl-
gives the necessary condition for the optimal solution ofth eigenvectory; andI-th eigenvaluey; (I = 1,2,...,D),

X ¢ {ui, 0,4} on condition that the discrimination error is that isoy = Y2, myny]. Solving g_yL“ =3N, leil %iyiilk +

a particular criterionF = C. Since the probability of dis-

OFij : . : ;
crimination error is calculated for all possible pairs (cate-" Sit1 X)i1 7 » e obtain the following generalized eigen-
goriesi,j = 1,2,...,N), this is the maximization of likeli- Vvalue problent (See also Appendix):
hood with latent variables of the discriminated pairs. The
optimization is computed with the EM algorithm, in which Ki N .
the E-step computes the expectation with the unknown pair- Z Rik(Sik — o) — /12 Qij(Sij + aij — i) |yi =0 (13)
ing probability, and the M-step maximizes the expectation [k=1 j=1

of likelihood function (Dempster, Laird, & Rubin, 1977).
Thus, the expected likelihood, with respect to a variable L Since the matrix in Equation (13) includes; or S;; which

for thei-th categoryX;, is calculated:2- = Z'N ZN Qij i, haso inside, it is not a typical eigenvalue problem, which has a
’ % o= o fixed matrix. Equation (13) can be considered an eigenvalue prob-
Ny R &k where the probability of category pairs are e Harati gen "
2i 2 Rigy» where p Yy gory p lem only whena is given. Thus, iterative method for eigenvalue

_ \P(c)P(c;) exp(Fij) - problems such as the power iteration method would be preferable
Qj = s, 2 APEPE) expFy)’ and the probability from cat- {5 c5iculate numerical values.
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whereSjc = (X — i) (Xik — )T andSij = (uij — i) (i — )" -
Because Equation (13) is also an eigenvalue form with a par @
ticular constanfi, we identify A = nﬁl and, using the rela-
tionship between the eigenvector and its madriyy = 7 Vi,
we obtain the quadratic eigenvalue problem.

G

A~ Harmonic mean of

o) ii adjacent covariance
 matrices=

O0()

@ Si Scatter matrix of
- instances belonging
a g to the category i
=
</

& Scatter matrix of
ij adjacent category centers

likelihood

*

(73 @iz + 7 Dig + Dig)ys = 0 (14)

where @iy = Z?:l Qij(Gij + Sij), Pix = —Zlﬁl Rikoik —
N1 Qij @2 = X, Rilp, andlp is D-th order identity
matrix.

The Equation (13) indicates that the specific structure o
category distribution consists of three separate component
The first component id;; which includesSy represents the
deviation of instances from the central tendency of categor riangles represent
(scatter matrix of instances). The first termiy represents nstances
the “harmonic mean” of nearby covariance matriegs The  Figure 5 An illustration of the local interactions among adjacent
second term ijo represents the scatter mat8x that char-  categories according to the packing theory. Each ellipsis indicates
acterizes local distribution of the central tendencies to nearbgqual-likelihood contour of category. The star shows a central ten-
categories. dency of a focal category, and triangles show the few experienced

To understand the meaning of these components, we dra’wstances of this focal category. The covariance matrix of the focal
' gategory is estimated with deviation of instances (triang&s),

g:lt?eerom:glii Igftei:g;fég.‘ Oiggeggai?erfem;?rr&pg?igse'_ thharmonic mean covariance matrix (ellipses) of adjacent categories
A ik (6ij), and deviation of central tendencies (filled circles) of adjacent

goriesS;j, and the harmonic mean of covariance matricescategorieS@)
ij (Figure 5). The probabilistic densit;; weighting to "
each component exponentially decays in proportion to the
“weighted distance’F;; between categorg; andc;. This
“weighted distance” is with respect to the distance betwee
central tendencies and also tilistance between covariance
matrices That means that interactions among categories ar
limited to a particular local region. In Figure 5b, the likeli-
hood contours of the closest categories to a target catego
are shown as ellipses, and the probabilistic weightxdoe- . X .
tween the target I?:ategory (cen?er) and others iskiﬁr?gjicated ) other categories remains the same, the estimated category
the shading. With respect to this locality, the scatter matrixiStributions will depend more on discriminabilitgi +o7i;)
of categoriesS;; reflects the variance pattern from the cen-"- That is, when the number of known instances of some
ter of categony; to other relatively “close” category centers. category is small, generalization to new instances will be
The harmonic means of covariance matriogsifidicate the = More influenced by the known distributions of surrounding
averaged covariance matrices among the closest categorié@tegories. However, when there are already many known
Note that it is a “harmonic” average, not an “arithmetic” Instances of a category, the experiences instances - and the
one, because the inverse (reciprocal number) of the covarknown distribution of that category - will have a greatéieet
ance matrix (and not the covariance matrix per se) is apprg?n judgments of membership in that category (and a greater
priate for the probabilistic density function with respect to &f€ct on surrounding categories).
inclusion and discriminability. The point of all this is that : :
categories with similar patterns of covariance matrices thapptlmal solutions for mean vectors
surround another category, will influence the surrounded cat- In the previous section, the optimal solution of covariance
egory, distorting the feature weighting at the edges so thahatrices was derived for a given set of fixed mean vectors.
the surrounded category is more similar to the surroundinghe optimal solutions for mean vectors may also be written
categories in its instance distributions. as eigenvectors of a quadratic eigenvalue problem. The dif-
These #ects depend on the proximity of the categoriesferential of discriminability and inclusion with respect to the
and the need to discriminate instances at the edge of the dimean vectors are:

Shape from constructed to animal like to simple

Textures and materials x ki

r(‘jistances of the central tendencies among categories increase
gncreasing gaps), the estimated category distribution will de-
pend only on the covariance of instan&&s Meanwhile, if

F?e number of experiences instances of categories decreases
(le., Ki » 0orRx — 0k = 1,2,..,K;j)) but proximity

tributions of adjacent categori&€sis covariance of instances OF: 1

belonging to a category, which is the natural statistical prop- il —=(oi + aj)‘l(,ui - 1) (15)
erty with respect to the likelihood of instances without dis- Opai 2

criminability. The magnitude o@; andRy are quite influ- 2 Although too few instances may cause a non-full-rank covari-

ential in determining the weighting between the likelihood ance matrix whose determinant is zero (i, = 0), in this special
of the instances of a category and the discriminability becase, we still assume a particular variability] = C. See also
tween categories. 1Q; — O(j = 1,2,..,N). Thus, if the = Method in Analysis 4.
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and Ki— 0o0orRj — 0k =1,2,..,K) ), the optimal mean vec-

G _ oM — ) (16) tor depends on both central tendencgnd distributiorE. of

o ATk instances (i.e., we obtaibu = 171X "1X by assuming = 0).
Thus in the latter extreme situation, the central tendencies

- Then strongly depends on the estimated distribution of instances
oL K; N of each categor¥. In other words, this optimization of cen-
N _Z R M — Xik) + ,12 Qj(oi + o) M(u — ;)  tral tendencies also indicates the emergencenubothcat-
i = =t egories, that is, there is predicted correlation between dis-

(17)  tances in central tendencies and distributions. This correla-

The equation is rewritten with N times larger order of matrix tion between the distance of two categories and their feature
as follows. distributions is a solution to the feature selection problem.
z*l(ﬁﬂ -X)—ADu =0 (18) The learner can know the relevant features for any individual

In Equation 18, each term s as follows= (4T .1 T category from neighboring categories.
1 _ l?ﬂZaﬂwﬂN) ’

N Ki T vKi T K T\ i1
X = (2r, Rl S0 RokXDs oo 20 RukXl ) Analysis 1: Is the Geometry of
( e Sl T o Nk) Natural Categories Smooth?

o ... O . - .
0(-)1 o 0 If natural categories reside in a packed feature space in

o . (19)  Which both discrimination and inclusion are optimized, then
: PR they should show a smooth structure. That is, near-by natural
0O 0 ... on categories should not only have similar instances, but they
should also have simildrequency distributionsf features
across those instances. Analysis 1 provides support for this
Ib T R 0 prediction by examining the relation between the similarity
D fuk=1 Tk Ky of instances and the similarity of feature distributions for 48
0 Ip 22 R - (20) basic level categories.
: : : A central problem for this analysis is the choice of fea-
0 0 o IR Ry tures across which to describe instances of these categories.
k=1 One possibility that we considered and rejected was the use
“and of features from feature generation studies (McRae et al.,
2005; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976;
Z-'\il Qu - On Quw o Qv Samuelson & Smith, 1999). In these studies, adults are given
= Q N Qs - Q. Q. a category and asked to list the features characteristic of
.21 =1 ?' 22 _2N items in each category (e.g., has legs, made of wood, can

o o

|
I

: : . : be sat on). The problem with this approach is that the fea-
Qn1 Qnz ... YN, Qui— Qun/ tureslisted by adults as important to those queried categories
_ (21)  have (presumably) already been selected by whatever cogni-
whereQ;j = Qjj(oi + o))t tive processes make categories coherent. Thus, there is the
Since this equation indicates a typical form of the leastdanger that the use of these generated features presupposes
square error with a constraint, it is also rewritten as a typicathe very phenomenon one seeks to explain. Accordingly, we
quadratic eigenvalue problem as follows (Tisseur & Meer-chose to examine a broad set of polar dimensions unlikely

bergen, 2001): to be specifically ffered as important to any of these cate-
B L gories. The specific features chosen do not need to be the
(Plp - 2222 -2 2ExX Z)u =0 (22)  exactly right features nor comprehensive. All they need to

L do is capture a portion of the similarity space in which in-
whereX = RE"'Randa? = u" ®u. Thus, the optimal mean stances and categories reside. If they do and if the packing
vectoru is one of the eigenvectors given by this eigenvalueanalysis is right, these features should nonetheless define an
problem. This also suggests a similar structure as in th@-dimensional space of categories, which shows some de-
optimal solution for the covariance. The magnitudeQyf  gree of smoothness: categories with instances similar to each
andRy are quite influential in determining the weighting be- other on these features should also show similar category
tween the likelihood of the instances of a category and dislikelihoods on these features.
criminability between categories. If the distances between all To obtain this space, 16 polar opposites (e.g., wet-dry,
pairs of categories are infinite (i.€; — 0(j = 1,2,...,N)), noisy-quiet, weak-strong) were selected that broadly encom-
the optimal mean vector mainly depends on mean vectors gfass a wide range of qualities (Osgood, Suci, & Tannenbaum,
instances (and the matrix assigning instances to categorid®957; Hidaka & Saiki, 2004), that are also (by prior analyses)
) which is purely given by a set of instances (i.e., we obtainstatistically uncorrelated (Hidaka & Saiki, 2004) but that nei-
1 = R1Xby assumingpb = 0 on Equation (22)). On the other ther by introspection nor by prior empirical studies seem to
hand, if the number of instances of categories decreases (i.de specifically relevant to the particular categories examined
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in this study. In this way, we let the packing metric select thetion 24).
locally defined features.

The analysis is based on the assumption that categories 1 M
with more variability in their feature distributions in the W= = Zd”‘ (23)
world will yield more variability in the subjects’ judgments M k=1
about the relevant features. Thus, the mean of the subjects’ 1M
judgments for any category is used as an estimate of the mean o= = Z(dik — i) (i — )" (24)
of the feature distributions for the category and the covari- M &
ance of the subjects’ judgments is used as an estimate of co-

variance. where M is number of subjects (104) arntj is 16 dimen-
sional column vector havingth subjects’ adjective ratings
of i-th category. The smoothness index of the given cate-

Method gories is defined by the correlation of central tendencies and
o covariance as follows:
Participants
ij<i (il = el lloisll = llorll)
The participants were 104 undergraduate and graduate S= s, — (25)
students at Kyoto University and Kyoto Koka Women'’s Uni- \/Zi,J<i (eI = el 2 i el = Hlerl)

versity.

whereS is the smoothness index, a correlationféeéent be-
Stimuli tween all possible paired distances of central tendefigj¢s

1
and||aij||. llesill = {(/.t| —/Jj)T(/.li —pj)} * is the Euclidian
Participants were tested in Japanese. The English trangistance of the paired central tendencies of categamyd

lations of the 16 adjective pairs in English were dynamic-j (u; is the mean vector given as dimensional column vec-
static, wet-dry, light-heavy, large-small, complex-simple, -3 - .
slow-quick, quiet-noisy, stable-unstable, cool-warm, natural{0"- lloijll = tr{(”i _'“J'),T('“‘__“J')} is the Euclidian dis-
artificial, round-square, weak-strong, rough hewn-finelytance of paired generalization patterns of categagd j (
crafted, straight-curved, smooth-bumpy, hard-soft. The 4&’i IS covariance matrix given as dlmlensmnal square matri).
noun categories, in English, are butterfly, cat, fish, frog/léll = N7 i lluijll andllorll = N7 35 4 llorij || with top
horse, monkey, tiger, arm, eye, hand, knee, tongue, boot§ars indicates the mean jof;; || andj|o;|| respectively where
gloves, jeans, shirt, banana, egg, ice cream, milk, pizza, sal't\,l is number of possible combinations of pairs fronsate-
toast, bed, chair, door, refrigerator, table, rain, snow, stoneJOres.
tree, water, camera, cup, keys, money, paper, scissors, plant,In sum, smoothness is measured as a correlation between
balloon, book, doll, glue, airplane, train, car, bicycle. Thesethe distance of categories, which is measured by the distances
nouns were selected to be common with early ages of acquéf the central tendencies, and the generalization pattern for
sition (Fenson et al., 1994). each category, which is measured by the category’s covari-

ance matrix. Accordingly, we calculated the distances of the

central tendencies for each of the 48 categories to each other
Procedure and the distances of the generalization patterns (the covari-

ance matrices) for each of the 48 categories to each other.

Participants were presented with one noun at a time anif categories that are near in the feature space have similar

asked to judge the applicability of the 16 adjective pairs orgeneralization patterns, than the two sets of distances should
a 5-point scale. For example, if the adjective pair wamll-  be correlated with each other. Because distances between the
big, and the noun washair, participants would be asked to means of categories A and B are dependent of the distances
rate the size of typical instances of a chair on the scale obetween the means of categories B an¢| @e sampled in-
1 (indicating small) to 5 (indicating big). The presented or-dependent paired distances in which no category appears in
der of the list of 48 nouns by 16 dimension-rating scale waswo different pairs. For 48 categories, the number of possi-
randomly determined andftiéred across subjects. ble combinations of independent pairs%%. We analyzed
the median and the empirical distribution of 1000 such sam-
plings. We also transformed the rating data using a logistic
function, which corrects for the bounded rating scale. This

) o i corrected covarianag;;"and mearn; (having rangef oo, oo])
The adult judgments generate an initial space defined by

the 48 noun categories and the mean and variance of the rat-

ings of these nouns on the 16 polar dimensions. The mean 3 |n fact, for arbitrary points A, B, and C, the triangle inequality
and covariancer; of i-th category over instances, is defined |AB + |BC| > |CA is true, wherdAB| is a metric between point A
as the central tendencies and generalization patterns (Equand B.

The Smoothness index
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of dimensions andj is defined by the following equation: Categories whose instances are generally similar in terms
of their range of features also exhibit similar patterns of fea-

1 . . . .

50 = gido(l-p)o(1l—p)) 2 ture importance. The mathematical analysis of Packing The-

(TA” 7] {p.( P Ps( p,)} ory indicates that this could be because of the optimization of

@i = logpi—log(l- pi) discrimination and generalization in a geometry of crowded

ui—1 categories.
= —0
4
5

wherey; is mean ofi-th dimension (range 1 to 5), angl is
normalized mean having the range from zero to one. As the¢g st @ . : :

first differential with respect to corrected mearof logistic
function p; = (1 + exp))~t is proportional top;(1 — p;)
whereq is a particular constant, we use thigtdiential to
transform mean and variance to theoretically homoscedas
tic space with meamp; "and covariancer;;. The corrected
meany; and covariancer;j are used for the smoothness in-
dex instead of the raw meam and covariance;. (See also
Generalized Linear Model (McCullagh & Nelder, 1989) for
the detail of logistic analysis.) As a supplemental measure g
we also calculated smoothness by normalizing variance usg
ing a correlation matrix instead of a covariance matrix. TheZ
potential value of this approach is that it ignores artificial

correlations between means and (the absolute value of) th 2 4 6 8 10 12 14
. Distances of paired corrected mean vectors
variance. ”

N

f paired corrected covariance matrices
w
w 1

N
o

Results and Discussion 32f ) |
(b)

Figure 6a shows a scatter plot of all possible pairs of cate E 3r ) . 1
gories; the x-axis is the Euclidian distance of the paired cor- g FE :
rected mean vectors and the y-axis is the Euclidian distanc &
of the paired corrected covariance matrices. The correlatiors 26
between these two variables (with no dependence of paire 8 ,,
distances) is the Smoothness index (See Equation 25 for it
definition). The median correlation was 0.537 (95% confi—g-z-2
dence interval is from 0.223 to 0.756.). Figure 6b showsg ,
the same scatter plot using the correlation matrix instead og
the covariance matrix as the measure of category likelihooda R R .
here the median correlation was 0.438 (95% confidence in 16} A L ’ |
terval is from 0.137 to 0.699). These positive correlations . '
between the distances of central tendencies and the distanc "1 2 3 4 5 6 7 8 g

. . . . T . Distances of paired mean vectors
of category likelihoods provide a first indication that natural Figure & If a space is smooth then the nearness of the categories
categories may be smooth.

) . " . .. (distances of the means) and similarity of the generalization patterns
Figure 6 raises an additional possible insight. Not only doshould be correlated. The two figurefei in their respective mea-
categories near each other in feature space show similar pafgres of the similarity of the generalization patterns of categories:
terns of feature distribution, but across categories the changes) Scatter plot of the Euclidean distances of the covariance matri-
in the feature distributions appear to be continuous, both ires and the Euclidean distances of the means for pairs of categories.
terms of location in the feature space and in terms of the feaFhis correlation is the smoothness index0%37. (b) Scatter plot
ture likelinoods. This seamlessness of transitions within thef the Euclidean distances of the correlation matrices and the Eu-
space of categories is suggested by the linear structure of tigéidean distances of the means for pairs of categories) ¢s8).
scatter plot itself. This can emerge only if there are no big
jumps or gaps in feature space or in the category likelihoods.
Critically, the features qnalyzed in thi§ study were not pre- Analysis 2: Learning a New
selected to particularly fit the categories and thus the ob- Category
served smoothness seems unlikely to have arrived from our
choice of features or a priori notions about the kind of fea- According to Packing Theory, the generalization of a cat-
tures that are relevant forftiérent kinds of categories. In- egory to new instances depends not just on the instances that
stead, the similarity of categories on any set of features (witthave been experienced for that category but also on the dis-
suficient variance across the category) may be related to thgibutions of known instances for nearby categories. From
distribution of those features across instances. one, or very few new instances, generalizations of a newly

18F
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encountered category may be systematically aligned with thenean vectors and covariance matrices of the categories that
distributions of instances from surrounding categories. Thicomprise the model’s background knowledge. Because chil-
is illustrated in Figure 7: a learner who already knows somealren are unlikely to have complete knowledge of any cate-
categories (shown as solid ellipses in Figure 7a) and observemry, the mean and covariance for the background categories
the first instance (a black star) of a novel category (a broare estimated from a random sampling of 50% of the adult
ken ellipsis) may predict the unknown generalization patterjudgments. This is done 50 times with each of the 48 noun
shown by the broken ellipsis (Figure 7b). Because nearbgategories from Analysisl serving as the target category.
categories have similar patterns of likelihoods, the system ) ) o

(via competition among categories and the joint optimization Estimation of a novel category from the first instance
of inclusion and discrimination) can predict the likelinood of Within the packing model, the variance (and covariance) of
the unknown category, a likelinood that would also be similarthe probablhs_tlc densny function is a c_rltlcal determiner of
to other known and nearby categories in the feature space. i€ feature dimensions that are most important for a local
categories did not have this property of smoothness, if theyedion and category. Thus, to predict the distribution of in-
were distributed like that in Figure 7c, where each categorytances for the target category, a category for which only one
has a variance pattern unrelated to those of nearby categorid@stance is given, we derive the covariance estimation for the
the learner would have no basis on which to predict the genwhole category. To do this, we let the scatter matrix of cate-
eralization pattern. The goal of Analysis 2 is to show thatdoryi be zero (i.e.5; ~ 0) by assuming the first instance is
the packing metric can predict the feature distribution patlose to the true mean (i.&; = 1 andx; = ). In addition,
terns of categories unknown to the model. In the simulatione assume that the unknown likelihood of the novel category
the model is given the mean and covariance of 47 categorid@kes the fornG; — log(C) whereC is a particular constant.
(from Analysis 1) and then is given a single instance of thdn Pparticular, in case . Based on this assumption, we can
48th category. The model's prediction of the novel proba-Obtain the covariance matrix of categdty (o) by solving
bilistic density is calculated by an optimal solution with re- the Equation (13). Then the optimal covariance of the novel
spect to the configuration of surrounding known noun cate€ategory is given as follows:

gories.

(a)

N
O'i:éZQij (éij+6'ij) (26)
j=1

G
G

Likelihood
whereC = C’ZjN:l Qy (S + a'ij)' is derived from the con-

straint% = Gj—C = 0. Thus, estimated; in Equation (26)
optimize the packing metric, and it is considered as a special
case of the general optimal solution when the covariance ma-
trix of instances is collapsed to be zero (because there is the
only instance). This equation indicates that a novel category
with only instance can be estimated with harmonic mean of
nearer known covariance matrices{) and nearer scatter

matrix of weighted meané(j). This directly means the co-
variance matrix of the novel category is estimated from the
Feature 1 Feature 1 other covariance matrices of nearby categories.

Figure 7. (a) Each ellipsis indicates the equal-likelihood contour.  We used Equation (26) in order to calculate a covariance
Two schematic illustrations of a (b) smooth (c) and non-smoothmatrix of a novel category; from an instance sampled from
space of qategories. The broken ellipsis in each figure indicatefha categoryK; = 1, xc = 44) and other known categories;(

the equal-likelihood contour of the unknown category, and the Sta&nda,—, i=12..,i-1i+1,..48). The scaling constant in

indicates a given first instance of that category. The solid e”ipse%quation (26) is assumed to have the same determinant of co-
indicate equal-likelihood contour of known categories. A SmOOthvariance matrix as the target category as the adult iudament
space of categories provides more information for predicting th 9 gory judg

likelihood of the novel category contour. as (i.eC = |Sj| so as to havgri| = [S] ).

Feature 2
—

af(

Control comparisonsThe packing metric predicts the dis-
tribution of instances in the target category by taking into
Method account its general location (indicated by the one given in-
stance) and the distributions of known instances for nearby
On each trial of the simulation, one target category is aseategories. It is thus a geometric solution that derives not
signed as unknown; the other 47categories serve as the badkem what is specifically known about the individual cate-
ground categories that are assumed to be already learnegbry but from its position in a geometry of many categories.
Each of the background-knowledge categories is assumed #sccordingly, we evaluate this central idea and the packing
have a normal distribution, and the model predicts the covarimodel’s ability to predict the unknown distribution of in-
ance matrix of the target category of the base on the givestances by comparing the predictions of the packing model
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to two alternative measures of the distribution of instanceshe simulation is that the accuracy of novel word generaliza-
in feature space for that target category that take into actions will be monotonic increasing function of number of cat-
count only information about the target category and not in-egories. But here is what we do not know: As children learn
formation about neighboring categories. These two alternacategories, are some regions dense (e.g., dense animal cate-
tive measures are: (1) the actual distribution of all instancegories) and other sparse (e.g., tools)? Are some regions of
of the target category as given by the subjects in Analysis the space -even those with relatively many categories -sparse
and (2) three randomly selected instances from that subjed the sense of relatively few experienced instances of any
generated distribution of instances. The comparison of thene category? Knowing just how young children’s category
predictions of the packing metric to the actual distributionknowledge "scales up” is critical to testing the role of the
answers the question of how well the packing metric generjoint optimization proposed by Packing Theory in children’s
ates the full distribution given only a single instance but in-category development.
formation about the distributions of neighboring categories. The formal analyses show that for the bias inherent in
The second comparison answers the question of whetherthae joint optimization of discrimination and inclusion require
single instance in the context of a whole geometry of catmany categories (crowding) and relatively many instances
egories provides better information about the shape of thah these categories. This crowding will also depend on the
category than more instances with no other information.  dimensionality of the space as crowding is more likely in
a lower than in a higher dimensional space, and we do not
Results and Discussion know the dimensionality of the feature space for human cat-
egory judgments. This limitation does not matter for test-
The predicted covariance of the target category by théng general predictions since the optimization depends only
packing model correlates strongly with the actual distribu-on distance relations in the space (and thus on the number
tion of instances as generated by the subjects in Analysief orthogonal, that is uncorrelated, dimensions but not on
1. Specifically, the correlations between the packing metany assumptions about what orthogonal directions in that
ric predictions for the target category and measures of thepace constitute the dimensions) and since the prediction of
actual distributions from Analysis 1 were 0.876, 0.578 andsmoothness should hold in any lower-dimensional charac-
0.559 for the covariances and variances (136 dimensions)erization of the space. The specification of the actual di-
the variances considered alone (16 dimensions) and the caiensionality of the space also may not matter for relative
variances considered alone (120 dimensions). These are rpredictions about more and less crowded regions of people’s
bust correlations overall; moreover, they are considerablgpace of categories. Still, insight into the dimensionality of
greater than those derived from an estimation of the targethe feature space of human categories would benefit an un-
category from three randomly chosen instances. For thigerstanding of the development of the ability to generalize a
"control” comparison, we analyzed the correlation of covari-new category from very few instances.
ance matrix for each category calculated from randomly cho-
sen three instances of adults’ judgment with that calculated General Discussion
from the whole set of instances. Their average correlations
of 50 different random set of samples were 0.2266 in vari- A fundamental problem in category learning is knowing
ances (S.03=0.2610), 0.2273 in covariance (S40.1393) the relevant features for to-be-learned categories. Although
and 0.4456 in both variance and covariance (SIX0655). this is a dfficult problem for theories of categorization, peo-
The packing metric —given one instance anébrmation  ple, including young children, seem to readily solve the prob-
about neighboring categoriesdoes a better job predicting |lem. The packing model provides a unified account of feature
category shape than a prediction from three instances. Ipelection and fast mapping that begins with the insight that
sum, the packing metric can generate the distribution of inthe feature distributions across the known instances of a cat-
stances in a category using its location in a system of knowigory play a strong role, one that trumps overall similarity, in
categories. This result suggests that a developing systejndgments as to whether some instance is a member of that
of categories should, when enough categories and their ireategory. This fact is often discussed in the categorization
stances are known, enable the learner to infer the distributioliterature in terms of the question of whether instance dis-
of newly encountered categories from very few instancestributions or similarity matter to category formation (Rips,

A geometry of categories —and the local interactions among989; Rips & Collins, 1993; Holland et al., 1986; Nisbett
them- creates knowledge péssiblecategories. et al., 1983; Thibaut et al., 2002). The packing model takes
There are several open questions with respect to the joinble of instance distributions and ties it to similarity in a ge-
optimization of inclusion and discrimination should influ- ometry of category in which nearby categories having sim-
ence category development in children who will have sparseitar category-relevant features, showing how this structure
instances and sparser categories than do adults. The prmay emerge and how it may be used to learn new categories
cesses presumed by Packing Theory may be assumed to &lem very few instances. The packing model thus provides
ways be operation as they seem likely to reflect core opera bridge that connects the roles of instance distributions and

ating characteristics (competition) of the cognitive systemsimilarity. The fitting of categories into a feature space is
But their dfects will depend on the density of categories andconstrued as the joint optimization of including known and
instances in local regions of the space. An implication ofpossible instances and discriminating the instances belong-
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ing to different categories. The joint optimization of inclu- tion unites but of a fundamentallyféirent kind. In the SOM
sion and discrimination aligns nearby categories such thatlgorithm, information coders do not explicitly have “their
their distributions of instances in the feature space are morewn type” of information. Rather it is the topological rela-
alike. The chain reaction of these local interactions across thigon among information coders that implicitly specifies their
population of categories creates a smooth space. Categorigeadients of data distribution. In the SOM learning process,
that are similar (near in the space) have similar distributionghe closest information units to an input is gradually moved
of instances; categories that are dissimilar (far in the spacdd better fit the data point, and nearby points are moved to
have more dissimilar distributions of instances. fit similar inputs. Thus nearby units end up coding similar

In this way, the packing model provides the missing link inputs.
that connects similarity to the likelihood of instances. Both  Topological algorithms such as SOM assume that a
similarity and feature distributions are deeply relevant to unssmooth structure is a good way to represent information and
derstanding how and why human categories have the struthis assumption is well supported by the many successful ap-
tures that they do. However, the relevance is not with respegilications of these algorithms (Kohonen, 1995). However,
to the structure of a single category, but with respect to thgust why a smooth structure is “good” is not well specified.
structure of a population of categories. Smoothness implie$he packing metric might provide an answer from a psycho-
a higher order structure, a gradient of changing feature rellogical perspective. The packing neither assumes topological
evance across the whole that is made out of, but transcend®lations nor a smooth structure, but ratipgoducesthem
the specific instances and the specific features of individuahrough the joint optimization of discriminability and inclu-
categories. It is this higher order structure that may be usesion. Thus, a smooth space might be a good form of repre-
able by learners in forming new categories. This higher ordesentation because of the tradélmetween discrimination and
structure in the feature space aligns with what are sometimegeneralization.
called "kinds” or "superordinate categories” in that similar
categories (clothes versus food for example) will have SimiPacking Theory in relation to other accounts of fast
lar features of importance and be near each other in the sPaggapping
However, there are no hard and fast boundaries and the pack-
ing does not directly represent these higher order categories. Fast Mapping is the term sometimes used to describe
Instead, they are emergent in the patchwork of generalizayoung children’s ability to map a noun to a whole category
tion gradients across the feature space. How such a spag@en just one instance (Carey & Bartlett, 1978). Packing
of probabilistic likelihoods of instances as members of basicTheory shares properties with two classes of current explana-
level categories relates to higher and lower levels of catetions of fast mapping in children: connectionist (Colunga &
gories (and the words one learns to name those categories)$snith, 2005; Roger & McClelland, 2004, see also, Hanson &
an important question to be pursued in future work. Negishi, 2002 for a related model) and Bayesian approaches

(Kemp, Perfors, & Tenenbaum, 2007; Xu & Tenenbaum,
Packing Theory in relation to other topographic 2007). Like connectionist accounts, the packing model views
approaches knowledge about the fierent organization of éierent kinds
as emergent and graded. Like rationalist accounts, the pack-

The packing model shares some core ideas with other tdng model is not a process model. Moreover, since the pack-
pographic approaches such as self-organizing maps (SONhg model is build upon a statistical optimality, it could be
see Kohonen, 1995; see also Tenenbaum, 2000; etc.) . THiermally classified as a rationalist model (Anderson, 1990).
central assumption underlying the algorithms used in SOM iDespite these flierences, there are important similarities
that information coding is based on a continuous and smoothcross all three approaches. Both the extant connectionist
projection that preserves a particular topological structureand Bayesian accounts of children’s smart noun generaliza-
More particularly, within this framework, information coders tions consider category learning and generalization as a form
(e.g., receptive fields, categories, memories) that are neaf statistical inference. Thus, all three classes of models are
each other code similar information whereas coders that argensitive to the feature variability within a set of instances.
more distant code ffierent types of information. Thus, SOM All agree on the main idea behind the packing model that
and other topographical representations posit a smooth refeature variability within categories determines biases in cat-
resentational space, just as the packing metric. egory generalization. All three also agree that the most im-

However, there are fferences between the packing model portant issue to be explained is higher order feature selec-
and algorithms, such as SOM. In the packing metric, catetion, called variously second order generalizations (Smith,
gories may be thought of as the information coders, but undones, Landau, Gershikestowe, & Samuelson, 2002; Col-
like the information coders in SOM, these categobegin  unga & Smith, 2005), overhypotheses (Kemp, Perfors, &
with their own feature importance and their own location inTenenbaum, 2007), and smoothness (the packing model).
the map, which is specified by the feature distributions of exUsing the terms of Colunga and Smith (2005), the first or-
perienced instances. Within the packing model, local comder of generalization is about individual categories and it is a
petition “tunes” feature importance across causes of the pomeneralization over instances. The second order generaliza-
ulation of categories and creates a smooth space of featution is generalization oflistribution of categoriesver cate-
relevance. SOM also posits a competition among informagories. The central goal of all three approaches is to explain
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how people form higher-order generalizations. the kind of mechanisms or neural substrates in which such
There are also important and relatedfeliences among hierarchical pre-ordained knowledge resides is also far from
these approaches. The first set offeliences concern obvious.
whether or not the dlierent levels are explicitly represented  The packing model provides answers and new insights to
in the theory. Colunga and Smith’s (2005) connectionistthese issues that put smoothness neither in the data nor as
account represents only input and output associations, the pre-specified outcome. Instead, smoothness is emergent in
higher order representations of kind — that shape is more rethe local interactions of fundamental processes of categoriza-
evant for solid things than for nonsolid things, for example —tion, inclusion, and discrimination. As the proof and analy-
areimplicit in the structure of the input-output associations.ses show, the joint optimization of discriminability and in-
They are not explicitly represented and they do not pre-existlusion leads to smooth categories, regardless of the starting
in the learner prior to learning. In contrast, the Bayesian appoint. The packing model thus provides answer as to why
proach for the novel word generalization (Kemp et al., 2007 categories are the way they are and why they are smooth.
Xu & Tenenbaum, 2007) has assumed categories structurékche answer isiot that categories have the structure they do
as a hierarchical tree. The learner knows from the start thah order to help children learn them; the smoothness of cate-
there are higher order and lower order categarieshierar-  gories in feature space is not a pre-specification of what the
chy. Although the packing model is rationalist in approach, itsystem has to learn as in the current Bayesian accounts of
is emergentist in spirit: Smoothness is not an a priori expecehildren’s early word learning (although the smoothness of
tation and is not explicitly represented as higher order varigeometry of categories is clearly exploitable). Rather, ac-
able but is an emergent and graded property of the populaording to Packing Theory, the reason categories have the
tion as a whole. As it stands, the Packing model also makestructure they do lies in local function of categories, in the
no explicit distinction between learned categories fiedént  first place: to include known and possible instances but to
levels such as the learning of categories of animal as dogliscriminate among instances falling infférent categories.
for example. The present model is considered only basid@he probabilistic nature of inclusion and discrimination, the
level categories and thus is moot on this point. Howeverfrequency distributions of individual categories, the joint op-
one approach that the packing metric could take with respedtmization of discrimination, and inclusion in a connected
to this issue is to represent all levels of categories in the samgeometry of many categories creates a gradient of feature
geometry, with many overlapping instances, letting the jointrelevance that is then useable by learners. For natural cat-
optimization of inclusion and discrimination find the stable egory learning, for categories that are passed on from one
solution given the distributional evidence on the inclusiongeneration to the next, the optimization of inclusion and dis-
and discrimination of instances in the overlapping categoriescrimination over these generations may make highly com-
This approach might well capture some developmental phemon and early-learned categories particularly smooth. Al-
nomena. For example, children’s tendency to agree that urthough the packing model is not a process model, processes
known animals are “animals” but that well known ones (e.g.,0f discrimination and inclusion and processes of competition
dogs) are not. Within this extended framework, one mightin a topographical representation are well studied at a variety
also want to include, outside of the packing model itself ,of levels of analysis and thus bridges between this analytic
real-time processes that perhaps activate a selected map afcount and process accounts seem plausible.
categories in working memory or that perhaps contextually
shift local feature gradients, enabling classifiers to flexiblyTestable Predictions
shift between levels and kinds of categories and to form ad
hoc categories (Barsalou, 1985; Spencer, Perone, Smith, & The specific contribution of this paper is a mathematical
Samuelson, in preparation). analysis that shows that the joint optimization of inclusion
The second and perhaps most crucidfedence between and discrimination yields a smooth space of categories and
packing theory and the other two accounts is the ultimatéhat given such a smooth space that optimization can also ac-
origin of the higher order knowledge about kinds. For con-curately predict the instance distributions of a new category
nectionist accounts, the higher order regularities are latergpecified only by the location of a single instance. What is
structure in the input itself. If natural categories are smoothneeded beyond this mathematical proof is empirical evidence
by this view, it is solely because the structure of the catethat shows that the category organizations and processes pro-
gories in the world is smooth and the human learning systerposed by the packing model are actually observable in human
has the capability to discover that regularity. However, if thisbehavior. The present paper provide a first step by indicat-
is so, one needs to ask (and answer) why the to-be-learnédg that the feature space of early-learned noun categories
categories have the structure that they do. For the curremmay be smooth (and smooth enough to support fast map-
Bayesian accounts, a hierarchical representational structug@ng). Huttenlocher et al (2007) have reported empirical
(with variabilized over-hypotheses) is assumed and fixed (bugvidence that also provides support for local competitions
see the other approach that learns the structure (Kemp &mong neighboring categories. Huttenlocher et al’'s (2007)
Tenenbaum, 2008). These over-hypotheses create a tree ethod provides a possible way to test specific predictions
categories in which categories near the tree will have simifrom Packing Theory in adults.
lar structure. Again, why the system would have evolved to The local interactions that create smoothness also raise
have such an innate structure is not at all clear. Moreovemew and testable hypotheses about children’s developing cat-
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egory knowledge. Because these local competitions deperalso Turkington, 2002). Fad x d matricesX, Y, Z and a
on the frequency distributions over known instances and theonstant matrixA which is not function ofx,
local neighborhood of known categories, there should be partial[X|

observable and predictable changes as children’s category — = = X1
knowledge “scales up”. Several developmental predictions ov(X)

follow: (1) Learners who know (or are taught) affsciently (X1t %1 g X-1T
large and dense set of categories, should form and general- vix) _( ® )
ize a geometry of categories that is smoother than that given Atr(AX) N

by the known instances. (2) The generalization of any cat- v(X) = V(A')

egory trained with a specific set of instances should depend

on the instance distributions of surrounding categories and VX)) _ (ilg — X)(XI ® |d)
be distorted in the direction of the surrounding categories; 0%«

thus, children should show smoother category structure and ov(2) ov(Y) ov(X)
smarter novel noun generalizations in denser category re- V(X) - V() v(Y)

gions than sparser ones. (3) Thieets of learning a new ) . .
category on surrounding categories or surrounding on neW/Nerexc and. are respectively k-th eigenvector and eigen-

categories should depend in formally predictable ways on th¥2/ue of ad-th order real symmetric matriX. We derive

feature distributions of those categories. Equation (11) from Equation (8) using formulae above,
Conclusion —49Fy; _ ov(Auiy M) .\ 26|09|2_10_'ii| _ dlog|o
ov(oi) ov(oi) ov(oy) ov(oy)
. tCatelglor'ies (and the]ir instaniﬁs) dotnot gxist_ljﬂ islolatliqn 6V(0_le)v(A N T) s ‘9V(‘Ti)v((;-1) ) aV(‘Ti)V((T—lT
ut reside in a space of many other categories. The local ir- Ee) Hij OH (o ” \ii oy

teractions of these categories create a gradient of higher or-
der structure - dferent kinds with dferent feature distribu- = — (o7 @ o) v (A A ) + 2v (o)) = v(o M)
tions. This structure emergent from the interactions of many
categories in a representational space constrains the possible
structure of both known and unknown categories. Packing = —v(o (u — i) (ui — faij) "ot + o 6ot = o7 )
Theory captures these ideas in the joint optimization of dis-

crimination and generalization.

= V(o A Al ot = 20— oY)

whereoi; = o + oj andAyij = pi — pj. And note that
Acknowledgements aij = oy = 2o ot andor Ay = oo (i — )
are used for the last line. Thus, we obtain Equation (11).
This study is based on in part on the PhD thesis of the firstikewise the derivation of Equation (11), we derive Equation
author. The authors thank Dr. Jun Saiki and Dr. Toshio Inui(12) from Equation (2) as follows.
for their discussion on this work. This study was supported

o1
by grants from NIH MH60200. ~20Gy _ 91(Skoi) | dlogloil
(o) V(o) ov(oi)
Appendix: Derivation of _ ott(eh) N) i
differential with respect to = Tov(on) V(Sic) + a\/(gi)v(cri )

covariance matrix . _
= - (0—”1 ® O—ile)V(Sik) + V(O—I lT)

—1 —1T -1T
:V(_O-ij Sika-ij +O—i )

We derive Equation (11) and (12) by expand%fg\ and

%. For the derivation, we use the vectorizing operatof)v( _ ] ) _
which form a column vector from a given matik(See also Next, we derive Equation (13) using formula for the dif-
Magnus & Neudecker, 1988; Turkington, 2002 for the ma-ferential with respect to eigenvector as follows.
trix algebra). A useful formula on vectorizing operator is as oLy _ 0v(oi) dln
follows. ForA: mx n matrix andB: n x p matrix, s s ov(o)
oL
V(AB) = V(InAB) = (BT ® Im) v(A) — (ilp - o)(§ ® ID)V(W;-))
1

V(AlnB) = (B" ® A) v(Im)
= V(ABI,) = (I,®A)v(B)

oln 1
= milp — o) ——
(77|I D 0'|)6V(0_i) S
. — . Inl = 0is
wherel, is m-th order identity matrix ang denotes Kro- _ _ _ dai
necker product. Moreover, we use the following formulae innecessary in order to obtain non-obvious Solutlon‘;?fgr =
order to expand the fierential with respect to a matrix (See 0. Therefore, we obtain Equation (13).

Sinceln;lp — oj| = 0 is obvious by definition
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